A Guide for Childhood Brain Tumor Families

presented by:

CHILDREN’S BRAIN TUMOR FOUNDATION
RESEARCH • COMMUNITY • COMPANIONSHIP

www.cbtf.org 1.866.228.HOPE
This guide is dedicated
to the life and memory of

Jill Adlman
March 16, 1975–October 20, 1990

We hope it will be like her,
a light and an example to others
in their struggle against brain cancer.
ACKNOWLEDGMENTS

Sixth Edition

We would like to thank all of the contributing authors including the thousands of families who have given us insight over the past 30 years.

Tara Brinkman, PhD
St. Jude Children’s Research Hospital

Joanne Candela, NP
Adult Long-Term Follow-Up Program, Memorial Sloan-Kettering Cancer Center

Wade Iwata, MSW
Seattle Children’s Hospital

Barbara Jones, PhD
Associate Director and Co-Director of the Institute of Grief, Loss, and Family Survival – School of Social Work, University of Texas at Austin

Emily H. Tonorezos, MD, MPH
Adult Long-Term Follow-Up Program, Memorial Sloan-Kettering Cancer Center

Linda Wachtel
Parent, Children’s Brain Tumor Foundation Board Member

Brad Zebrack, PhD, MSW, MPH
Professor of Social Work, University of Michigan

We would like to thank the following CBTF Board members for their continued support of the Children’s Brain Tumor Foundation

- Robert Budlow, Board Chair
- Lionel Leventhal, Treasurer
- Miriam Barry, Secretary
- Eric Snyder, Vice Chair
- Leigh Anne Brodsky, Vice Chair
- Gary Brewster
- Christopher Coutts
- Billy Goldstein
- Anita Nirenberg, Ph.D., RN, FAAN, PNP-BC, AOCNP
- Linda Wachtel
- Akiva Zablocki
A special thanks to the CBTF staff, Gary D. Jaworski, Ph. D., President, Jessica Elder,LCSW, Kayla Giacin, Kate Shafer, LICSW, Brett Sternik, and Stacia Wagner, VP Quality of Life Research and Programs for the tireless dedication to the families impacted by a childhood brain and spinal cord diagnosis.

Thank you to American Legion Child Welfare Foundation for funding this production of *Finding Your Way*.

Thank you to Robert Kline for his amazing design work and the survivors and professionals at Scratch DJ Academy included in the picture.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Facts About the Brain and Spinal Cord</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brain and Nervous System Basics</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Cells of the Brain and Spinal Cord</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Structures of the Brain</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Structures of the Spinal Cord</td>
<td>13</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Pediatric Brain Tumors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>What Is a Tumor, and What Makes Brain Tumors Different From Other Tumors?</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>How Are Brain Tumors Diagnosed?</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>What Brain Tumors Are Common in Children?</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Specialists and Your Child’s Treatment Team</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>How Are Brain Tumors Usually Treated?</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>What New Treatments Can We Expect in the Future?</td>
<td>33</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>During and After Treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Helpful Hints for Hospitalizations</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Neurosurgery</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Going Home</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Follow-Up and Rehabilitation</td>
<td>47</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Looking Ahead</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Follow-Up</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Neuro-Cognitive Challenges</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Neurological and Neurosensory Problems</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Other Late-Effects</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Emotional and Social Impact</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Preparing</td>
<td>56</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Supporting Your Family and Yourself</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Parent as the Advocate</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Siblings</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Nutrition</td>
<td>63</td>
</tr>
</tbody>
</table>
Clinical Trials 111
Complementary Therapies 111
Education Resources 112
End-of-Life Resources 113
Information and Financial Aid Resources 113
Social Media and Online Support 114
Survivorship Resources 115
Wig Resources 116

Chapter 13 **A Glossary of Terms** 117
Like every parent who has heard the diagnosis of a brain tumor, the day I heard those words about my son will always be with me. That was in 1987 and my son was only 19 months old. Today, I am proud to say that he is 32 years old and a survivor.

In 1987, there was only minimal research dedicated to pediatric brain tumors. There were no resources or supports for families. It was before the beginning of the Children’s Brain Tumor Foundation, and before the Internet. One couldn’t imagine the changes ahead with online searches arming families to become advocates with information instantaneously at our fingertips; and parents and survivors connecting with other families through online groups like Facebook.

Out of the urgent need for meaningful research, a small group of dedicated parents and medical professionals came together and inspired the birth of the Children’s Brain Tumor Foundation (CBTF). As CBTF marks the milestone of its 30th anniversary, we pause to consider all that has changed in the world of pediatric brain tumors. Yet, there is still so much more to be done.

To make this difficult journey a little bit easier, the first edition of the resource guide was printed in 1995. This book was the first in what later became a continuum of the most innovative patient education and support programs to help families across the country. We remain dedicated to helping families navigate the greatest challenges from the moment following diagnosis through long-term survivorship or bereavement.

I wish to give special thanks to all who have worked so hard to update and expand the information and usefulness of each edition of the resource guide. On behalf of the Board of Directors and the staff of CBTF, it is with great pride that I present to you the sixth edition of the guide, now called FINDING YOUR WAY.

Linda Wachtel, Parent
CBTF Board of Directors
January 2018
CHAPTER 1

WHY WE WROTE THIS GUIDE

Access to medical information is now readily available and with some extra work you can locate information which is understandable. One aim of this guide is to provide basic, reliable medical information regarding the diagnosis and treatment for most childhood brain tumors.

Knowledge is power, but that does not mean all knowledge on the internet is accurate or trustworthy. Here are some tips on locating reliable information on the Internet. In a future chapter, there is also information on obtaining a second opinion. The internet has reliable and unreliable information. Here are some things to consider:

- If you are using a search engine, begin with the information below the sponsored line or sites which do not say ad in front of it.
- Consider who is writing the information. Sites ending in .edu mean it is part of an educational system, .org usually indicates it is a non-profit organization, .gov indicates it is part of a government site and .com or .biz means it is part of a for profit site. In the United States, educational and government websites usually contain accurate and up to date information. Most non-profit websites contain accurate information, but depending on the size of the organization, it may not be as up to date regarding treatment options.
- Check the date of the last update on the site.
- Consider who sponsors a website. If its sole purpose is to sell something, you should questions its accuracy.
- Where does the information come from? If it is documented from scientific sources, it can be considered reliable. Personal stories and blogs may provide information and valuable tips in dealing with side effects, but each brain tumor diagnosis is unique and people are writing form their own perspective.
Chapter 1: Why We Wrote this Guide

- Avoid sites which offer scientific breakthrough, require payment up front, require you to disclose personal information, offer testimonials without scientific proof or offer money back guarantee.

Always rely on your medical team for the answers to medical questions and accurate information.
When your child is diagnosed with a brain tumor, you are thrown into a medical world which you may not be familiar with. Here are some tips in dealing medical appointments and tracking medical information

- Ask your medical team the best way to have questions answered. Can you email the doctor or nurse practitioner with questions? Does your hospital have an online patient portal where you ask questions?
- Write your questions between treatments and bring the list with you to appointments.
- If you are having trouble communicating with your medical team, ask your social worker to assist you. Your social worker can set up a team meeting and assist in building trust and a communication system which is advantageous for everyone.
- Listen actively. Take notes during appointments or ask the doctor to write down important points for you. Bring a friend to take notes. Ask the team if you can record important meetings.
- Make sure the team is aware of how much information and how you and the rest of your family would like to receive information.
- If there are cultural differences, please communicate them with your team. For example, let them know who should receive information.
- If your child is a minor, determine what meetings you would like her at? Do you want siblings at meetings?
- Be open and honest with your medical team including your needs and any alternative medical decisions you are considering.
- Keep your pediatrician updated and design a communication method so he will be kept up to date. This will assist with the transition in the future.
• Take advantage of the many specialists on the team and know each of their roles.

A childhood brain tumor diagnosis goes far beyond the medical treatment. Its treatment causes side effects and effects long after treatment ends (late effects). It may impact a person physically, cognitively and emotionally. The impact is not just on the patient, but on the entire family. This guide is meant to be a primer to steer the entire family through the multitude of impacts and provide practical tips in dealing with them.

The guide will provide advocacy and coping tips not only during long, painful and stressful treatments, but also after treatment ends. As parents, you will often feel as if you are forced to make difficult medical decisions and may feel as if you are a lone advocate for your child. This guide was written by a community of impacted by community brain tumors who are here to support you and help you to not feel alone. You did not ask to join this community, but can now rely on it for support. Feel free to contact Children’s Brain Tumor Foundation at 212-448-9494, email info@cbtf.org or visit our website at www.cbtf.org to further connect with others, learn more about our programs or seek answers to questions you may have.
CHAPTER

2

FACTS ABOUT THE BRAIN AND SPINAL CORD

Your brain is what allows you to multi-task at all times. Whether you are sleeping or awake, your brain is monitoring all your major body organs without you having to think about it. When you have to do ten things at once, your brain helps you manage all of that. Your brain controls balance and complex motions. Your brainstem is the connector to your spinal cord and controls hunger, thirst and most body functions such as body temperature, blood pressure and breathing. The spinal cord, in effect, is an extension of the brain, transmitting messages to and from the brain. It’s like a relay station in an intricate, ordered, and continual pattern of electrical traffic.

These complex functions and the multiple ways the parts of the brain are connected and work together create the complex effects a brain tumor may have. While a tumor in one part of the brain may impact other areas as well. However, knowing the function of the area of a brain tumor will help you understand the impact of the tumor. We discuss these structures separately to help you better understand them, but they are really all interconnected and intertwined, working together at all times. A disruption in one part of the brain may cause disruptions in other parts as well.

Brain and Nervous System Basics

Together, the brain and spinal cord make up the central nervous system (CNS). The network of nerves that connects the CNS to the arms, legs, eyes, ears, and other organs is called the peripheral nervous system (PNS). We are usually aware of our legs and arms moving and can generally control them. But other activities—such as blood circulation, breathing, digestion, and the work of hormones in our body—are carried out without our thinking about them. These
are functions of the **autonomic nervous system**, which is controlled largely by the **brainstem**.

Because the brain and spinal cord are so vital to the body’s function and survival, nature has provided some “protective armor”. The first layer of protection is the skin, which plays an essential role in fending off infection. Next are the bony structures of the skull and spinal column. The top of the skull, or **cranium**, surrounds the brain, keeping it from being crushed. Despite its thinness, its rounded design gives the cranium. The spinal cord is housed inside the hollow **vertebrae**, or spinal bones, of the neck and back. In addition, muscle groups strengthen and pad the spine.

Beneath the bony structures covering both the brain and spinal column are three layers of membranes, called **meninges**. The outer layer is the **dura mater**, a tough, translucent skin. Next is the spongy substance called **arachnoid**, which contains blood vessels. Closest to the brain surface is the **pia mater**, which contains major blood vessels and covers the brain’s wrinkles and folds.

Cerebrospinal fluid (CSF) is a clear, watery substance that forms yet another protection for the brain and spinal cord, cushioning them from jolts and knocks much as amniotic fluid protects a fetus. It also nourishes the brain while carrying away waste products. CSF is found between the pia mater and arachnoid layers of the meninges, as well as throughout the brain in cavities and tunnels called **ventricles**. CSF is constantly manufactured within the ventricle in the **choroid plexus**.

The body can be harmed when a brain tumor blocks the flow of CSF from a ventricle or if too much CSF is produced. If that happens, fluid builds up within the brain, which has very little room to expand inside the skull, resulting in raised intracranial pressure (ICP). The resulting condition is called **hydrocephalus**. As a result of hydrocephalus, a person may experience one or more of the following symptoms: headaches, vomiting, clumsiness, and drowsiness or lethargy.

Many aspects of brain tumor treatment are different than other types of cancer and tumors. One aspect impacting treatment is the **blood–brain barrier (BBB)**. The blood-brain barrier protects the brain from unwanted materials entering the bloodstream, protects the brain from hormones and neurotransmitters in the rest of the body and maintain a constant environment for the brain. While its impenetrable
quality if good for regular function, it is a pain when trying to treat disease. Researchers continue to look for ways around this barrier when it is standing in the way of treatment. Currently, chemotherapy may be given into the subarachnoid space to by-pass the blood-brain barrier, this is called intrathecal chemotherapy. Additionally, Implantable wafers are being explored as a means of getting chemotherapy around the blood-brain barrier.

Cells of the Brain and Spinal Cord

Like all living tissue, the brain and spinal cord are made up of cells, which have characteristics and names unique to their function. The cells unique to the central nervous system are neurons and neuroglia. Neurons are the workhorses of the nervous system, sending and receiving signals to and from the brain through numerous connections. “Hundreds of billions” of neurons in the brain, with many times more interconnections, is as precise a figure as they can currently estimate. Each nerve cell is made up of a nerve body, with branches called dendrites and axons extending outward like a starburst (see Figure 1). These branches are responsible for transferring signals between cells. The axon typically carries signals from the neuron to other neurons or organs such as the heart, muscles, and lungs. The dendrites, usually found in large numbers on each neuron, receive signals from other neurons or sensory organs. Together these form a complex network of “wires” that carry nerve messages in pulsed signals to affect every human action, including thought, sensation, motor movement, respiration, and laughter.

Figure 1. A neuron
Unlike many other cells in the body, neurons cannot be replaced once they die. New experiments in animals have been able to regenerate limited neurons in limited areas. However, most dead neurons cannot be replaced. Nevertheless, the brain possesses an amazing ability called **plasticity**—which means it can often adjust to injury or loss of brain cells by making new interconnections, which take over for the loss of others. Younger children, whose brains are still developing, seem to have the greatest ability to recuperate from this sort of damage. But scientists have found even adult brains have enough flexibility to form some new connections in the brain. *As you accumulate medical information and learn about cognitive and physical changes, please keep this remarkable ability in mind.*

Neuroglia are the second type of cell found in the brain and are involved in over half of all brain tumors. The literal meaning, “nerve glue,” describes their supportive role. During fetal and infant development, certain neuroglial cells help guide the neurons to their final destinations in the brain and spinal cord. Others surround and nourish neurons while ingesting debris.

Tumors arising from neuroglial or glial cells are referred to generally as **gliomas** but will often take their more specific names from the type of glial cell involved. The most common childhood brain tumors involving glial cells are **cerebellar** and **hemispheric astrocytomas**, **brainstem gliomas**, **optic pathway gliomas**, **ependymomas**, and **gangliogliomas**.

Brain tumors in children arising from neurons or their precursors include **primitive neuroectodermal tumors (PNETs)**, such as **medulloblastomas** and **pineoblastomas**.

Structures of the Brain

From the outside, the most obvious parts of the brain are:

- The two wrinkled **cerebral hemispheres** in the left and right halves of the upper brain (together called the **cerebrum**)
- The **cerebellum**, a smaller section attached to the lower back portion of the cerebrum.
The **brainstem**, which extends down from the center of the brain and in front of the cerebellum, to merge with the top of the spinal cord.

Figure 2. A brain (side view) and what it does: a diagram of how the brain works.

The **brainstem** controls our most basic functions, many of which happen without our thinking about them. Three structures make up the brainstem:

- The **medulla** controls breathing, swallowing, blood pressure, and heart rate.
- The **pons** (Latin for “bridge”) links the cerebrum to the cerebellum and medulla oblongata.
- The **midbrain** governs basic vision and hearing
- Running down the length of the brainstem is the **reticular formation**, which is responsible for alertness or arousal. If a brain tumor distorts the reticular formation, a coma like state can occur.
There are twelve pairs of cranial nerves. Each cranial nerve exists as a pair, one nerve for the left side of the body and the other nerve for the right side. Most of them originate in the brainstem. They are identified by numbers (I through XII). These nerves control swallowing, facial movement, the senses (vision, taste, and hearing), and neck and shoulder muscles.

Major nerves carrying information to and from the rest of the body pass through the brainstem. The nerve axons cross over in the medulla so that the left side of the brain controls the right side of the body, and vice versa. Because of this tumors on one side of the brain may well affect movement and sensation on the opposite side of the body. (An exception is in the cerebellum, where a side of the brain sends signals to the same side’s arm and leg.)

Above the midbrain is the diencephalon, which includes the thalamus and hypothalamus. The hypothalamus is a regulatory center involved in many functions, such as hormone secretion (including that of the nearby pituitary gland), the autonomic nervous system, eating, sleeping, temperature, emotion, and sexual behaviors. Sitting above the hypothalamus, the thalamus serves as an information processor for much of what goes to and from the brain. A tumor in this region may cause hormone deficiencies that may alter growth, pubertal development, and handling of physical stress. In addition, tumors in this region can affect one’s ability to regulate body fluids and appetite.

The cerebellum is the lower back of the brain, beneath the cerebral hemispheres and separated from them by a fold of dura mater called the tentorium. It is about one eighth the size of the cerebrum. The cerebellum is involved in fine motor coordination and balance, continually and automatically making allowances that let the body maintain its balance. The effects of a tumor in the cerebellum may be balance and coordination difficulties. The person may be unable to judge distances or have control over hand movements.

The cerebrum is enormous in proportion to the rest of the brain. It is involved in sensory input, thinking, reasoning, learning, and memory—the functions we associate with intelligence. The cerebrum is proportionately larger in animals that seem to be able to take in
sensory information and analyze it in some way. But only in humans is it so massive and complex.

The cerebrum is made up of right and left cerebral hemispheres, with a large groove called the cerebral fissure separating the two sides. Deep inside the brain, in the middle, is the corpus callosum, a bundle of nerve fibers connecting the halves of the brain, allowing information to move back and forth between the two sides.

The outermost tissue of the cerebrum is called the cortex, a deeply folded area made up of billions of cell bodies whose darkish cast gives it the name gray matter. The axons connected to the cell bodies extend below the cortex, forming white matter, which is the inner portion of the cerebrum. The convolutions of the cortex are formed by deep folds that result in a more compact structure, much like the folding of a road map. It is estimated that if the cortex were unfolded, its area would be three times larger than the surface of the brain. This folding accomplishes an important conservation of space, which means many more nerve cells are concentrated in each unit of volume. This also means a disruption in any area may impact the millions of connections it has to other areas. For this reason, a person may have an effect related to a portion of the brain which is far from the tumor.

Like a road map, the cortex defines specific areas of function in the brain. Several large grooves, or fissures, outline four areas, or lobes, on each side of the brain: the frontal, temporal, parietal, and occipital lobes.

The frontal lobes are considered our emotional control center and home to our personality. The frontal lobes have much to do with the intellect and the ability to fit into a social group, helping us plan and prioritize, concentrate and recall, and exert control over our behavior. The impact of lesions here can be more complex than in any other area. Damage to the most forward section of the frontal lobes can cause changes in behavior, changes in the ability to read others reactions, changes in personality and lack of filter in behaviors, including sexual behaviors.
Toward the back of the frontal lobe is the **motor area**, a strip of brain with distinct sections controlling motor activity such as swallowing, chewing, talking, and movement of the hand, legs, toes, and so on. Doctors often need to map this area of the brain by using electrodes on the brain before surgery to make sure they know exactly where the functions are; otherwise, they might disturb or remove tissue that would affect those functions.

Toward the front of the **parietal lobes** is the **sensory area**, a strip of cortex going up one lobe, over the cerebral fissure, and down the other lobe, much as the motor area strip crosses the frontal lobes. The motor area controls movement; the sensory area is concerned with sensations coming in from the eyes, ears, nose, tongue, and other organs.

The **occipital lobes** are the visual center of the brain, making sense of information coming into the brain from the eyes. The left occipital lobe receives input from the right field of vision, and the right occipital lobe receives input from the left field of vision.

The **temporal lobes** are involved in a significant way with speech and language, hearing, and memory. The temporal lobes have additional complex features. The **amygdala** is located in the temporal lobe and appears to have a strong connection to mental and emotional reactions. It is also linked to fear responses and nervous reactions. It is believed to be associated with conditions such as autism and depression. The amygdala is connected to the **hippocampus**, which is known to be involved in the complex processes of forming, sorting, and storing memories.

This network of complex interconnections surrounding the top of the brainstem is called the **limbic system**. It links our basic functions and emotions to areas of the cerebrum that have to do with those higher levels of thought and understanding that we associate with being human. Although the lobes have overall executive functions, they do not act alone, nor does anyone process reside solely in a particular lobe. The brain’s massive network of interconnections keeps communication going between the hemispheres and among the lobes, as well as among the structures below the cortex. The brain always functions as a whole.
Structures of the Spinal Cord

We discussed the spinal cord above and explained that it extends from the brain and has the same layers (meninges) and CSF surrounding it (see Figure 4). The spinal cord makes up two thirds of the CNS and is a pathway for nerve impulses. Sensory information (such as touch, temperature, pressure, and pain) is carried to the brain. Commands that relate to movement (motor function) and reflexes travel from the brain to all parts of the body.

Figure 3. A cross-section of the spine.
The spinal cord is protected by the flexible, bony **vertebral column**, also called the spinal column. You can feel these separate, hollow bones (called vertebrae) along your back and neck. For identification purposes, these bones are grouped into sections, called levels, and are numbered (see Figure 5). Therefore, a spinal cord tumor might be described as occurring at either the cervical, thoracic, lumbar, sacral, or coccygeal level (for example, a tumor at C-3 or L-1.) The 31 pairs of spinal nerves are attached to the cord by roots and branch out to different parts of the body through spaces in the vertebrae.

![Figure 4. Side view of the spine showing vertebral levels.](image)
Tumors can grow inside (intrinsic tumors) or outside (extrinsic tumors) of the spinal cord and put pressure on the spinal cord. Signs and symptoms result from compression because there is very little space for a tumor to grow. Spinal cord tumors produce two effects. Local (or focal) effects (such as pain, weakness, and sensory impairment) are due to growth in the immediate area, involving bone and spinal roots. Distal (or remote) effects are related to interference with the relay system of nerve impulses. Weakness, loss of feeling, or loss of muscle control (paralysis or paresis) below the vertebral level of damage can occur.

A part of the outer bony wall in the spinal cord called the lamina may have to be removed (and replaced) during surgery to reach the tumor. If this is done, a child may occasionally need to be treated by an orthopedic specialist if an abnormal curvature of the spine develops.
CHAPTER 3

PEDIATRIC BRAIN TUMORS

Every year, about 4,150 children in the United States are found to have brain and spinal cord tumors. The past 20 years have led to a dramatic increase in the survival rate. This chapter provides an overview of the diagnosis and treatment of tumors in the brain and spinal cord (central nervous system, or CNS). Tumors can also arise in the spinal nerves (peripheral nervous system, or PNS) as well as the surrounding protective and supportive bones of the skull and spine.

Thanks to continued advances in computerized imaging, surgical techniques, radiation therapy, and chemotherapy, as well as newer approaches such as immunotherapy and gene therapy, the future of affected children continues to improve.

Although the cause of most brain tumors is not known, researchers are looking into environmental and genetic factors for clues. Unfortunately, there is little conclusive data on causes.

At a time when there is an explosion of medical information, families of children with brain and spinal cord tumors need up-to-date knowledge of recent advances and access to specialized treatment centers. Your own persistence in seeking information can be of great help to your child and your family. It is our goal to serve as a resource for families by providing information and support.

What Is a Tumor and What Makes Brain Tumors Different From Other Tumors?

A tumor is any abnormal mass in or on the body that is caused by abnormal cells growing and multiplying in an uncontrolled way. Doctors also call a tumor a neoplasm.
Primary tumors are made up of cells unique to the organ or tissue where they start. Secondary tumors start somewhere else in the body and spread, or metastasize, to one or more sites. Most brain and spinal cord tumors in children are primary, meaning that they start in the CNS and are not the result of malignant cells’ spreading to the brain from another location in the body. A primary tumor in the CNS rarely spreads beyond the brain and spinal cord.

When a tumor grows slowly and does not spread, it may be called non-malignant or benign. In contrast, malignant tumors tend to be fast-growing (made of cells that divide and multiply very quickly) and can invade surrounding tissues. Malignant tumors with aggressive growth may travel and grow somewhere else within the CNS. (Magnetic resonance imaging [MRI] scans of the whole CNS are sometimes needed to determine if this has occurred.) The word malignancy generally means cancer. A common perception is that all malignancy and cancer is “bad” and that non-malignant is “good.” When we talk about tumors in the CNS, however, these definitions become blurred. A non-malignant tumor that grows slowly can be life threatening if it is in an area of the brain where it compresses structures that control the most vital body functions (like breathing or blood circulation). There are occasions where even non-malignant tumors cannot be effectively treated, and in some circumstances, non-malignant tumors may change over time to malignant tumors.

Due to the brain and spinal cord being enclosed in rigid containers (skull and spine), abnormal growths may be noticed simply because there is not enough room for them. Often the growth or tumor will cause increased pressure in the head or spine, which produces symptoms. Symptoms are often evident at an early stage of tumor growth. (See ICP on the next page)

How Are Brain Tumors Diagnosed?

Brain tumors are often difficult to diagnose because they are rare and therefore not the first thing a doctor is looking for. In addition, their signs and symptoms may mimic those of other ailments. Symptoms will also vary according to the exact location of the tumor. For example, many childhood brain tumors cause vomiting. However, there are other much more likely causes of vomiting. It is therefore not unusual that a child with vomiting be seen several
times and maybe by specialists before the proper diagnosis is made. Many symptoms are due to the effects of raised intracranial pressure (ICP), brought on by the tumor’s size or location, blocking the normal flow of cerebrospinal fluid (CSF) from the brain. If the tumor has blocked the flow of CSF, the excess fluid builds up and causes a condition called hydrocephalus. Symptoms may include headaches (particularly in the morning), nausea, vomiting, poor coordination, seizures, drowsiness, and, in infants, an increase in head size. Other symptoms of a brain tumor may include behavior changes, blurred vision, weakness in a limb or on one side of the body, speech problems, and difficulty with balance.

Parents (and pediatricians) often feel distraught they did not make the diagnosis earlier; however the delay in diagnosis often does not affect the outcome. The fact you were a proactive parent helped in getting your child diagnosed.

Spinal cord tumors can cause pain (especially when a child is sleeping). Tingling or weakness in the arms or legs and loss of bladder or bowel control may occur. The symptoms a child has are related to pressure of the tumor on a particular area of the spinal cord.

Once other diagnoses have been ruled out, the doctor will take a health history of your child and do several measures of neurological function. Often a neurologist is involved; he or she may order tests such as an electroencephalogram (EEG), a computed tomography (CT) scan, and a magnetic resonance imaging (MRI) scan. Sometimes the pediatrician will order these tests directly. These tests are generally noninvasive but may require intravenous (IV) injection of a special dye (usually gadolinium), also called contrast, that makes the tumor stand out on film. If your child is unable to lie very still for the scanning procedures, he/she may be given a sedative orally or intravenously. The doctor may be able to determine the type of brain or spinal cord tumor from CT or MRI results. Sometimes an exact diagnosis cannot be made until a sample of the tumor is actually sent to the pathologist for study under the microscope. The results from the pathologist will be important to formulate a treatment plan. Germ cell tumors can be diagnosed from a blood and CSF sample; tectal
gliomas, diffuse pontine gliomas, and optic glioma are diagnosed by imaging and do not require biopsy in most cases.

What Brain Tumors Are Common in Children?

The sudden influx of medical terminology into your life can be intimidating. Health care professionals are familiar with such terminology through years of training and experience. But these terms are new to you, so ask your child’s doctor to explain them. Some parents report that taking notes during visits with the doctor helped them keep track of medical terminology. There are many types of brain tumors and many names for them—often even more than one name for the same tumor. The descriptions that follow include only the most common types of brain tumors found in children, divided into two broad groups according to their location.

Most childhood tumors (more than 60%) are located in the posterior fossa (the back compartment of the brain). This area is separated from the cerebral hemispheres by a tough membrane called the tentorium. The posterior fossa includes the cerebellum, the brainstem, and the fourth ventricle. Tumors in this area include medulloblastomas (also called primitive neuroectodermal tumors, or PNETs), cerebellar astrocytomas, brainstem gliomas, and ependymomas. Although less common, other rare types of tumors have also been observed in this area, such as rhabdoid tumors and ganglioglioma.

The remaining 30% to 40% of brain tumors occur within one of the two cerebral hemispheres or in the spinal cord. Tumors of the hemispheres include astrocytomas, oligodendrogliomas, craniopharyngiomas, choroid plexus carcinomas, ependymomas, supratentorial PNETs, pineoblastomas, and germ cell tumors. The most common tumors of the spinal cord are astrocytomas and ependymomas.

Names of tumors can be confusing. One large family of tumors—comprising half of all pediatric brain tumors—is gliomas, meaning
they arise from glial cells which provide support and protection to neurons. (See “Cells of the Brain and Spinal Cord” in Chapter 2, “Facts About the Brain and Spinal Cord.”) Glial cells consist of astrocytes, ependymal cells, and oligodendrocytes (myelin-forming cells). Some tumors take their names from these cells. For example, an astrocyte is a type of glial cell from which astrocytomas arise, so doctors may refer to the tumor as a glioma or as an astrocytoma. One term is simply more specific than the other. Tumors may also take their names from their location, such as the brainstem glioma.

Common Types of Brain Tumors

Medulloblastomas/PNET’s
Alternative names: Primitive Neuroectodermal Tumor (PNET)
These are one of the most common malignant brain tumors found in children (20% of all pediatric brain tumors) and usually occur in children between the ages of 4 and 10 years old. Medulloblastomas occur more often in boys than in girls. These tumors typically arise in the middle of the cerebellum, interfering with the flow of CSF and causing hydrocephalus. Symptoms may include headaches, vomiting, unsteady walking, and pain in the back of the head.

Medulloblastomas can spread to other parts of the brain through the CSF. Standard therapy for medulloblastoma consists of aggressive surgery followed by radiation to the entire craniospinal axis with boost to both the primary tumor site and focal CNS metastatic sites. Recently, adjuvant chemotherapy has also been shown to be beneficial.

Astrocytoma/Glioma:
Alternate Names: Anaplastic Astrocytoma; Glioblastoma Multiforme; Juvenile Pilocytic Astrocytoma (JPA); Pleomorphic Xanthroastrocytoma (PXA); Desembryoplastic Neuroepithelial Tumor (DNET)
Astrocytoma’s arise in cells called astrocytes, while gliomas originate in glial cells, which are most often themselves astrocytes. Astrocytomas and gliomas are sometimes used interchangeably.
There are two main types of astrocytoma’s: high-grade and low-grade. High-grade tumors are aggressive, fast growing, and easily spread. Low-grade astrocytoma’s are usually localized and slow growing.

Astrocytoma’s are commonly found in the cerebellum, cerebral hemispheres, and thalamus or hypothalamus. Astrocytoma’s account for the majority of pediatric brain tumors, with roughly 700 children diagnosed each year, with 80 percent of those diagnosed having a low-grade tumor. They can occur at any time in childhood or adolescence, and have the same symptoms as medulloblastomas.

Treatment is surgical removal of the tumor, which in the case of total removal of the tumor can be curative. If the tumor has grown into the brainstem, radiation therapy or chemotherapy (depending on the child’s age) is sometimes needed. Because radiation therapy can affect a child's growth and development, chemotherapy may be given to delay or eliminate the need for radiation.

Common Low-Grade Tumors are:
- Juvenile Pilocytic Astrocytoma
- Fibrillary Astrocytoma
- Pleomorphic Xanthoastrocytoma
- Desembryoplastic Neuroepithelial Tumor

Common High-Grade Tumors are:
- Anaplastic Astrocytoma
- Glioblastoma Multiforme

Brainstem Gliomas:
Approximately 10% of childhood brain tumors are **brainstem gliomas**, which most commonly affect children between the ages of 5 and 10 years old. Because of their location, brainstem gliomas may cause sudden dramatic symptoms, such as double vision, clumsiness, difficulty swallowing, and weakness. The brain stem is made up of the midbrain, pons, and medulla in the posterior part of the brain and tumors found on these structures are considered brain stem gliomas. The most common of these tumors are found in the pons region and are classified) as **diffuse intrinsic pontine gliomas (DIPG)**. Tumors found in the midbrain or medulla are most commonly referred to as focal brain stem glioma. In these cases, surgery is not usually an option. They are difficult to treat because the tumor cells grow in
between and around normal cells. It is usually impossible to remove a tumor in this area because it interferes with the functioning of this critical area of the brain. Radiation therapy, with or without chemotherapy, is the preferred option. Because of the rarity and poor prognosis of DIPG, children and their families are often encouraged to participate in clinical trials attempting to improve survival with innovative therapy.

Ependymomas:
Make up roughly 6% of pediatric brain tumors and can occur at any time during childhood; however the majority are diagnosed before age 5. These tumors arise from the cells that line the passageways that produce and store cerebrospinal fluid. There are two types of tumors: supratentorial (in the top of the head) or infratentorial (in the back of the head). The majority of tumors in children occur as infratentorial tumors arising in or around the fluid filled-fourth ventricle. Ependymomas cause symptoms such as; nausea, vomiting, problems with coordination, and hydrocephalus is often involved. Surgical removal of the tumor is the usual treatment of choice, followed by radiation therapy to the site of the resection.

Optic Pathway Tumors:
A small percentage (5%) of pediatric brain tumors involve the optic nerve, which sends messages from the eye to the brain. These are usually slow-growing and can be treated successfully with surgery, radiation therapy, or chemotherapy. Because visual pathways and/or the hypothalamus are affected, children with these tumors often have vision and hormone problems. Treatment options include surgery, radiation, and/or chemotherapy. Patients are evaluated based on age, extent of visual loss, and location of the tumor to decide on the treatment protocol. In patients who are asymptomatic and have smaller tumors, careful observation may be considered.

Craniopharyngiomas:
Nonglial growths, which account for 5%-13% of childhood brain tumors, usually causing limited growth because of their location near the pituitary gland. They may also affect vision due to their location. Treatment is often controversial because complete surgical removal may be curative but can also cause memory, vision, behavioral, and hormonal problems. Partial surgical removal plus radiation therapy is an alternative. Individuals who experience hormone problems will
require life-long hormone replacement. Additionally, long-term follow-up care is often needed for vision issues.

Germ Cell Tumors:
Alternate names: Germinoma; Embryonal Carcinoma; Endodermal Sinus Tumor; Teratoma
A small percentage of childhood brain tumors (less than 4%) arise in the pineal or suprasellar regions. They are most often diagnosed around the time of puberty and are more likely to affect boys than girls. These tumors may respond favorably to chemotherapy and/or radiation therapy, following surgery. Germinomas of the brain are amongst the most radiation-curable of all tumors. The optimal treatment for those children with the more difficult mixed malignant germ cell tumors of the brain continues to be somewhat controversial. These tumors are far less sensitive to radiation therapy than germinomas, and are not cured by radiation therapy alone. The currently accepted treatment approach is to use several cycles of intensive chemotherapy, followed by radiation therapy.

Choroid Plexus Tumor:
Alternate names: Choroid Plexus Papilloma; Choroid Plexus Carcinoma
The choroid plexus is located within the ventricles of the brain and produces CSF. Choroid plexus papillomas (non-malignant) and choroid plexus carcinomas (malignant) account for 1% to 3% of pediatric brain tumors. These types of tumors usually arise in infants and may cause hydrocephalus. The treatment is typically surgery and, if the tumor is malignant, chemotherapy, and/or radiation therapy.

Ganglioglioma
Alternate names: Gangliocytomas, Ganglioneuromas
These tumors arise in ganglia-type cells, which are groups of nerve cells. They represent 4% of all pediatric brain tumors. They most commonly occur in the temporal lobe of the cerebral hemispheres, the third ventricle, and less commonly in the spine. Treatment is typically surgery, and may include radiation if a full resection is not possible.
Atypical Teritoid/Rhabdoid Tumor (ATRT)
These tumors are rare, high-grade tumors that occur most commonly in children under the age of 2. They can be found in any part of the brain and tend to be aggressive and spread throughout the central nervous system. ATRT represents 1-2% of all pediatric brain tumors and was only recently classified as its own diagnosis within the past 10 years. Treatment tends to involve the surgical removal of the tumor followed by chemotherapy. Depending on the child’s age and whether a recurrence has occurred, radiation therapy may be given.

Oligodendroglioma
Oligodendrocytes, a type of supportive brain tissue, are where these tumors occur. They are most commonly found in the cerebral lobes of the brain. These tumors tend to occur in young and middle aged adults, with a smaller population of children being diagnosed each year. While pure oligodendrocytes are rare, mixed gliomas, tumors made up of both oligodendrocytes and astrocytes are far more common. Treatment usually involves the surgical removal of accessible tumors. Biopsy alone will be done to confirm tumor type for inaccessible tumors. Radiation therapy may follow, as well as chemotherapy for recurrent tumors.

Supratentorial Primitive Neuroectodermal Tumor (PNET)/Pineoblastoma:
Supratentorial PNETs and pineoblastomas account for approximately 5% of pediatric brain tumors. Their symptoms depend on location and proximity to the CSF spaces. Treatment involves surgical resection, radiation therapy to the brain and spine, and chemotherapy.
Chapter 3: Pediatric Brain Tumors

Specialists and Your Child’s Treatment Team

After the initial diagnosis of a brain or spinal cord tumor, you may need to consult other specialists and doctors. Together with you, these professionals will take a team approach and map out a general plan of care for your child. This plan will be continually evaluated and revised as needed.

Larger medical centers may run clinics and have a formal meeting of these multidisciplinary team members, sometimes called a tumor board. Depending on your child’s specific medical needs, you may need access to specialists or therapies at other facilities. Brain tumors are relatively rare, and children’s medical needs are different than adults’. Treatments and side effects for children may not be the same as those for adults. Pediatric specialists know the most about children’s care.

Not all institutions have exactly the same kinds of doctors or specialists, and their exact roles may differ. Some of these specialists are listed below. If you keep in mind that the prefix neuro- relates to the brain and spinal cord and that oncologists are doctors who study and treat cancer, the naming of these subspecialties will make more sense. The term pediatric in front of any of the terms listed below means that the specialist works primarily with children.

- Neurologist
- Neuro-oncologist
- Neuro-pathologist
- Neuro-psychologist
- Neuro-radiologist
- Neuro-surgeon
- Nurse practitioner
- Oncologist
- Physician’s assistant
- Physiologist/rehabilitation specialist
• Radiation oncologist
• Pediatric oncology social worker
• Child life specialist
• Physical therapist
• Clergy

Your child’s team may include anyone else who might provide insight into how a treatment will affect your child’s health and life—for example, your family’s pediatrician, a child life specialist, social worker, clergy, physical therapist. You and your child are the most important part of any meetings, and all comments, concerns, and feelings—both yours and your child’s—should be considered.

When a brain or spinal cord tumor has been diagnosed in a child, it may be important to have surgery or begin aggressive treatment rather quickly. Therefore, if parents are interested in seeking an additional opinion, talk to your doctor about your concerns and have them help you find a specialist. Waiting too long could have a negative impact on your child’s health. (In emergency cases, of course, action may need to be immediate and choices may be limited.)

It is important that you and your child feel you understand the treatment plan and feel comfortable with the treatment team. Because brain tumor treatments are rare and each treatment facility has varying experience in dealing with them you may choose to seek another opinion to increase this confidence level.

Getting a Second Opinion

Not everyone wants or requires a second opinion, but it is sometimes important and can be very reassuring. Your medical team should be helpful in assisting you with your questions regarding second opinions. Opinions may not, of course, be of equal value. All opinions should be obtained from pediatric facilities familiar with cases like your child’s.

Ask your doctor about the best place to obtain a second opinion. Consider asking him/her to call and make the appointment for you.
This may speed up the referral process. If you are unable to enlist the help of your child’s doctor, take the initiative and make the appointments yourself.

Your medical team should assist you in gathering the medical information such as scan results, laboratory reports, and surgical pathology slides you may need for a second opinion. Most treatment centers will specify what records are needed for a second opinion.

You are entitled to these records. Sometimes there is a fee for duplicating records. Keep a list of what you send, because some items will have to be returned. If the second doctor’s opinion differs from that of the first doctor, a third opinion may be necessary.

At the second opinion appointment, take notes or ask if you can record the meeting. It may also be helpful to bring along a trusted family member or friend who will also hear what is said or take notes for you. At treatment decision time, which can be emotionally stressful, two sets of ears are always better than one!

> My advice is to get more than one opinion on your child’s condition. Looking back, I wish that I had taken the time to make sure that the hospital and the doctor had the tools and experience to make sure my daughter got all of the testing and the best team for her condition.

How Are Brain Tumors Usually Treated?

Surgery

Treatment of brain or spinal cord tumors usually begins with surgery, also called **resection**, to remove all or part of the tumor. A surgery to remove only a small part of the tumor for diagnostic purposes is called a **biopsy**. A biopsy can also be helpful to determine if other types of treatment are less risky than resection. Some types of tumors, including DIPG and optic glioma, are not usually biopsied and tend to be treated after a diagnosis by MRI because of the possible risks involved to the child. Although complete removal of the
tumor (gross total resection) is often the treatment of choice, partial removal of the tumor will occasionally relieve a child’s symptoms.

Modern surgical equipment and experience allows neurosurgeons to locate and remove tumors previously considered inaccessible. Advanced equipment also helps identify (and therefore avoid damage to) critical areas like cranial nerves or parts of the brain that control speech. Examples of these advances are operating microscopes with magnification and illumination allow surgeons to see structures in great detail, frameless stereotaxy provides a road map to structures in the operating room, and ultrasonic aspirators allow tumors to be separated from normal brain tissue or the spinal cord.

Surprisingly, brain surgery is not particularly painful, as the brain itself has no pain sensation. It usually involves general anesthesia, causing the patient to be completely asleep for the operation. The head is held in a stable position and the scalp is injected with local painkillers. The scalp is opened and the skull bone is exposed. A trapdoor of bone is created and temporarily removed. The lining of the brain (dura mater) is opened and the brain or tumor is exposed. Once the tumor is removed, the dura mater is sutured closed, the bone is repositioned with titanium plates and screws, absorbable plates and screws, sutures, or fine wire. The scalp is then closed with sutures or staples.

Removal of the tumor often relieves some of the uncomfortable, dangerous pressure that an unwelcome mass in the brain or spinal cord causes. Surgery also establishes the diagnosis by obtaining portions of the tumor for the pathologists to examine. Pathologists can perform a frozen section procedure (also known as cryosection) at the time of surgery to help the surgeon determine the best course of action in the operating room. The frozen section is used to provide rapid microscopic analysis of the tissue and provides only preliminary results, as there are often many special stains and techniques that the pathologist will use to identify the tumor. Some tumor types, including astrocytoma and other gliomas, may be assigned a grade (high or low) that is based on its rate of growth and ability to spread.
After surgery, the patient will usually have a follow-up MRI scan done within the first 2 days. This will confirm the extent of tumor removal and provide a baseline image for future comparison. On occasion, the surgeon, on the basis of the MRI scan findings, may want to return to the operating room to remove a portion of tumor that was not clearly seen at the time of the first surgery.

In some circumstances, resection alone may be curative. Other tumors may require additional therapy such as chemotherapy or radiation therapy.

Some tumor locations may cause a buildup of CSF. In these cases, the surgeon may place a ventriculostomy tube from the spaces of the brain to a drainage bag at the bedside. This allows the fluid pressure to be released while the brain swelling improves. These tubes cannot remain in place forever, because the surrounding tissues are prone to infection. Over the course of a week or so, the ventriculostomy tube drainage is “weaned” so the tube can be removed at the bedside. In a significant percentage of cases, however, a permanent device—called a ventriculoperitoneal shunt (VP shunt)—must be placed to allow internal sterile drainage from the brain to the abdomen for the body to absorb the CSF. In certain situations, a third ventriculostomy is performed, in which a small connection is made between where the body makes CSF and where CSF is reabsorbed into the blood. This connection short-circuits the blockage.

Radiation Therapy

Radiation therapy involves aiming beams of X-Rays or gamma rays at the tumor in prescribed doses over a scheduled period of time. The rays kill the tumor cells by destroying their ability to divide and multiply. But radiation therapy, like surgery and chemotherapy, is a double-edged sword. It can harm normal tissue near the tumor, or along the path of the beam traveling in and out of the body when targeted at the tumor, as well as, cells of the immune system. The side effects can include brain swelling, fatigue, hair loss, skin irritation, nausea, and vomiting. Newer radiotherapies include intensity-modulated radiation therapy (IMRT), proton-beam, and stereotactic all of which are precisely focused therapies, as well as
conformal radiation, which is a regionally focused therapy, and hyperfractionated radiation, which is a split-dosing therapy. CT and MRI scans can be combined in computerized treatment planning. The goal is to provide the maximum dose of radiation to the tumor cells while sparing all healthy cells and tissues around the tumor from harm.

Children must remain absolutely still during these treatments. Because babies and young children may be unable to cooperate, conscious sedation or general anesthesia can be given. Doctors hesitate to treat young children’s brains with radiation therapy. Although it may be effective against the tumor, it can cause significant long-term side effects such as learning, developmental, and memory problems. Your child’s doctor will discuss with you the risks, benefits, and alternatives to help you decide whether radiation therapy should be part of the treatment for your child.

When stereotactic radiosurgery is used, the patient’s head is stabilized in a metal ring and a single dose of radiation is administered from a modified linear accelerator machine, Gamma Knife, or X-Knife. Stereotactic radiosurgery is usually not an alternative to conventional radiation therapy, though it may be recommended as a supplemental treatment. It is an alternative only in rare situations. This technique delivers a highly concentrated radiation dose with little injury to the adjacent brain tissue. Unfortunately, it is not useful for patients with tumors that infiltrate the brain or tumors that are larger than a walnut.

Although most radiation therapy targets malignant tumors, doctors also may use radiation therapy on certain non-malignant tumors that are surgically inaccessible.

Chemotherapy

Chemotherapy is the use of certain chemicals to slow down or kill rapidly dividing tumor cells. Chemotherapeutic drugs are used before, during, or after surgery and radiation therapy. Like radiation therapy, they can also kill beneficial cells and have side effects such as nausea, vomiting, fatigue, infection, bleeding, and hair loss.
Chemotherapeutic drugs include many different medicines. They are used alone or in combination, depending on the type of tumor being treated. Some side effects are unique to certain drugs, such as nerve injury with vincristine, and hearing loss with cisplatin. Doctors carefully monitor the administration of these drugs to minimize side effects, and researchers are continually developing new drugs with improved effectiveness and reduced harmfulness.

Chemotherapeutic drugs can be taken orally or intravenously through a vein in the arm or hand. If chemotherapy is going to take place over an extended period of time or will be given to a child whose veins are small or hard to access, doctors may suggest surgically implanting a device in a major vein, giving easy access to a vein without repeated needle sticks. Once implanted, the device can be used not only for chemotherapy but also for antibiotics, fluids, blood transfusions, and for drawing blood for laboratory work.

Currently there are two devices commonly used for long-term access to the veins. Both are catheters inserted under the skin. The insertion is a minor surgical procedure that may require an overnight hospital stay or may be done as outpatient surgery. One end of the catheter is threaded into a large vein in the chest. The other end, into which the IV drugs will go, can either exit the chest through the skin (as with the Broviac or Hickman) or be left just under the skin (as with the Port-a-Cath), terminating in a little rubber reservoir into which the drugs are injected with a needle. A skin-numbing cream (EMLA) can be used over the reservoir to relieve the pain of a needle stick before the Port-a-Cath or Mediport is accessed.

If your child’s doctor recommends a catheter, be sure to discuss with him or her, the benefits and risks of each type. The Broviac requires some special care at home; medical personnel will teach you what you need to know.

You can obtain more information about the short- and long-term effects of these therapies from your treatment center and the many resources listed in Chapter 11 (“Resources”). Medications are available to relieve some of the uncomfortable immediate and short-term side effects. Long-term side effects may require follow-up care by other specialists.
Consult your child’s doctors about your child’s specific needs and before treating any related health-problem on your own—even skin irritation.

Additional Treatments and Drugs

Excess fluid in the brain causes a variety of problems in brain tumor patients. As you have read, hydrocephalus results from excess CSF in the brain and leads to a variety of unpleasant symptoms. To relieve the buildup of CSF, doctors may surgically implant a flexible piece of narrow tubing into the brain and thread the other end of the tubing under the skin either into the abdominal cavity or through a vein to the heart. The CSF can then flow down the **shunt**, as it is called, away from the brain, and be absorbed into the body or filtered through the blood stream. Sometimes another CSF pathway can be established by a newer procedure called a third ventriculostomy. This procedure may avoid the need for a shunt.

If your child needs to have a shunt implanted, you will need to know the type of shunt, possible problems, and what symptoms to be aware of that may cause a possible problem. (More information on shunts can be obtained from the **Hydrocephalus Association**, listed in Chapter 11, “Resources.”)

Some tumors cause the normal brain tissue around them to swell with excess fluid and inflammation. Surgery and radiation therapy can also produce swelling. Whatever the cause of the swelling, doctors routinely prescribe **Decadron** (dexamethasone), a steroid and anti-inflammatory drug that reduces swelling. This treatment usually brings dramatic relief to the child who has been having headaches, vomiting, and nausea due to swelling. **Steroids** are powerful, wonderful medicines, but they may have side effects: increased appetite, high blood pressure, susceptibility to infection, facial swelling, acne, and fluid retention. In addition, children may have an artificial cheerfulness (euphoria) and experience an emotional letdown or mood swings as the dose is decreased. Children taking Decadron may have an enormous appetite! It is very important to take these medications with food to avoid stomach irritation or bleeding. Antacids may be prescribed to help protect the stomach. The body’s response to taking steroids is to stop its own production of steroids, so
it’s important that patients not discontinue this medicine abruptly. When the doctor wants the drug stopped, the dosage will be gradually tapered off.

Children undergoing chemotherapy or radiation therapy may face the discomfort of nausea and vomiting. There are drugs available to alleviate these symptoms called antiemetics. If you see your child developing nausea, speak with your child’s medical team. There are different medications available, so you will be able to work with your child’s doctors to find the best antinausea treatment for your child.

What Can We Expect in the Future?

New Treatments

Many children’s tumor specialists are excited about treatments currently being researched and developed. They expect to see advances in several areas: less traumatic surgeries, new chemotherapeutic drugs and combinations of drugs that could effectively replace surgery and radiation therapy, chemotherapy with fewer side effects, treatments that marshal the body’s own immune system to kill tumor cells, and gene therapy. Research must continue in specialized medical centers and children’s hospitals, where health care professionals are experienced at taking care of a child undergoing these types of treatment.

The media is always describing seemingly miraculous cures and treatments, and well-meaning friends and relatives may overwhelm you with books and articles about alternative therapies. Remember that only you, along with a doctor or team that you have confidence in, can evaluate these choices and decide on a treatment plan for your child. You likely will hear opinions that will make you second-guess your own judgment. Speak to your child’s doctors openly and do not be afraid to ask whatever questions are on your mind.
Clinical Trials/Protocols

Your child’s doctor or treatment team may recommend that you enroll your child in a clinical trial. This is a research study of new therapies (or experimental drugs and treatments). By studying a larger collected group of children in a protocol with very exact treatment guidelines, doctors are able to draw better conclusions about how effective a treatment is and work to improve it.

The National Cancer Institute (NCI) oversees a large cooperative group of over 240 hospitals—the Children’s Oncology Group (COG)—which develops new treatments for children with brain tumors, shares information, and have common goals. You may be referred to a children’s hospital or academic medical center for participation in a clinical trial.

Research is important for finding and providing new or improved treatments. Your child may be the first to receive new therapies before they are more widely available; they often become standard treatment. By evaluating new therapies for large numbers of children through COG, researchers can more quickly and efficiently gather information about effective therapies.

Phases of Clinical Trials: Clinical trials are often described as being phase I, phase II, or phase III. Phase I trials are done to evaluate the side effects of a new treatment and to establish the proper dose. Different patients may receive different doses of the same medicine. Although doctors hope that the treatment may help the patient, that is not the main goal of a phase I clinical trial. After a phase I trial has been completed and the proper dose of the new medicine has been determined, a phase II trial may begin. In a phase II trial, all of the patients receive the same dose of the medicine and the goal is to see how effective the new treatment will be. If a phase II trial finds that the new treatment is very promising, a phase III trial may be done. In a phase III trial, patients are randomly given one of two different treatments. Randomly means that a computer (not the doctor or parent) decides which of the treatments a given patient will receive. A phase III trial is usually done to find out whether a new treatment is better than, worse than, or the same as the established treatment for a certain disease.
How to Find Clinical Trials: More information on clinical trials can be obtained through:

- NCI’s direct search for clinical trials, available at www.clinicaltrials.gov
- Virtual Trials at www.virtualtrials.com
CHAPTER

4

During and After Treatment

Helpful Hints for Hospitalizations

Depending on what type of brain tumor your child has, you may be experiencing long hospital stays. A hospital environment can seem intimidating at first, but we hope the hints we provide here will help you and your child feel more comfortable. Don’t hesitate to express any concerns, ask questions, or encourage your child to ask his or her own questions—children old enough to think of a question are probably old enough to ask it themselves. Information will give both of you a sense of control. Loss of control is often a big issue for children and teens while in the hospital, as their independence and freedom are significantly diminished. If you do not understand something, ask for further explanation until you do understand. Often literature is available.

When talking to your children giving correct, honest, and age-appropriate information about the diagnosis and how it will be treated will help with your children’s adjustment. Honest communication with your children will serve your family well not only during hospital admissions but also throughout the entire treatment. Children may sense there is more going on and make up explanations in their own minds. It is important to remember that young children will not demonstrate the same intellectual awareness or emotional reactions to events as adolescents or adults will. It may be beneficial to prepare your children in advance of upcoming hospitalizations, if able. During hospitalizations, you may find it useful to connect with the hospital social worker, who is skilled at helping parents sort out their own feelings and finding appropriate ways to communicate with children.
Play is a wonderful outlet for children’s fears and anxieties. “Medical play” with stuffed animals or dolls can help children learn about their own procedures and surgeries as well as provide a healthy outlet for frustration, anger, and anxiety. Medical play or directed play can be used educationally to demonstrate exactly what is going to happen. Because a lot of your child’s anxiety currently is medical, you can use stories to direct his or her play and bring out what is on your child’s mind. This will also give you insight into your child’s worries, fears, and concerns. For example, a child may develop a unique relationship with a doll that has a brain tumor “just like I do.” Drawing pictures or playing with medical equipment (safe, not sharp or dangerous!) provided by the hospital staff can help relieve anxiety and fear and enable your child to express his or her understanding of what is happening. Providing a creative outlet for your child, of whatever age, can be very helpful; videos and books may help to explain things to older children. Ask the hospital child life specialist to guide you in selecting helpful tools and provide ideas for how to use these tools

More Specific Hints:

- Ask for flexible visiting hours for parents.
- Ask what accommodations the hospital provides for parents staying overnight, such as recliner chair-beds, toiletries and bathing facilities for caregivers, laundry facilities, meals for parents, and available refrigerator space.
• Take a proactive role in your child’s care by assisting with toileting, bathing, and eating. However, be aware that sometimes it may be necessary for you to step aside and let the nurse assist with these functions.

• Request that painful procedures be done in the treatment room if possible. Children need to have places where they feel safe, so pain should not be a part of their experience in their room or in the playroom.

• Take advantage of times when you can take a break, because both your mental health and your physical health are very important to your child’s care. Identify a few friends and family members whom your child knows and feels comfortable with and whom you trust can be an important support, especially during extended hospital stays.

• Access hospital services that help children with adjusting to the hospital environment, their illness, and separation from their usual daily routines. Use the services of child life specialists and visit the playroom so your child can socialize with other children. Play can decrease fear and anxiety, which makes coping with feelings about medical procedures, hospital equipment, and personnel easier.

• Try to maintain some sense of connection to your child’s school and peer group. Often school’s will set up a hospital visit or send video messages between classmates and your child. Hospital-based teachers are available to help your child with schoolwork during extended hospital stays.

• Many hospitals now provide complimentary medicine services such as yoga, massage therapy, mediation/guided imagery, music therapy, and Reiki, which promote wellness and relaxation. Ask your child’s nurse whether these services are available at your hospital.

• If your child is confined to bed, arrange for a child life specialist to visit and bring activities to the bedside. Volunteers may also be available for reading, playing, or just for company.
Check to see if there is a refrigerator in which you can store some of your child’s favorite foods and snacks. Ask if your child can go to the cafeteria and choose his or her own meals.

Try to arrange for your child to wear his or her own clothes as much as possible. Clearly label belongings with your child’s last name, using permanent ink. Ask staff members if there is a washer and dryer available for your use.

Try to arrange for treatments and procedures to be scheduled so your child has time to rest and be refreshed before visitors are expected.

Inform visitors about the best time of day to visit. Some children feel better in the morning others, in the afternoon.

Encourage family and friends to visit your child for brief visits for your child may require quiet time for their well-being and healing.

Try to keep your child’s daily routine as consistent as possible during the hospital stay. This can prove extremely reassuring to everyone and is particularly important for the youngest patients.

If your child has a radio, iPod, DVD player, or laptop computer, bring it to the hospital (with earphones). Many institutions have electronics and video games for patient use. Favorite movies, games, and music can be comforting.

Bring things from home to make the hospital room more like your child’s own room: stuffed animals, books, a blanket or comforter, family photos, posters, and so on. Items from home can be very comforting and make the hospital room more personal and cozy.

Find out if there is a children’s library or reading room in the hospital.

Remember that members of your child’s health care team are available to you and your family to answer any questions and provide support.
• Consider arranging for your child to talk with a hospital social worker or psychologist without your being present. Even young children try to protect their parents from their fears.

• Young children tend to be primarily concerned about separation from their parents. Reassure them every time you leave that you love them and will be back as soon as you can. If you know what time that will be back, say so.

• Encourage your child to keep in touch with friends and classmates while absent from school. It is also important that your child go back to school as soon as possible. This delivers an important message: “Despite the illness, I’m still a normal child with outside friends, interests, and responsibilities.”

Neurosurgery

Your child’s neurosurgeon will go over the precise details of what will take place during your child’s surgery. This is often an overwhelming and scary discussion to have. It is important that you do your best to understand what is going to take place. Not only will you be asked to give informed consent by signing the papers that give the surgeon permission to operate, but you are also going to need to understand for yourself and your child what will take place. By giving consent, you acknowledge that everything has been explained to you—and that you understand it. If you don’t understand something, ask the doctor to explain it again. Preparing your child to undergo surgery can help with their adjustment after the operation, child life specialists are often available to help with surgery preparations.

Children often pick up information from overhearing parents and family members talking. Therefore, however young your child is, it is a good idea to discuss the surgery with him or her. It will help prepare your child for surgery if you explain what is going to happen in terms that are age-appropriate and understandable. You may want to utilize Children’s Brain Tumor Foundation’s Parker’s Brain Storm, a children’s book designed to explain brain tumor surgery to the youngest children. Children can become overwhelmed and anxious if they are given either too much detailed information or too little
information about a procedure or operation. It is also wise to address your child’s questions and concerns. This allows less room for your child’s vivid imagination to fill in the blanks. The hospital’s child life specialist and social worker are trained to help you find good ways to talk with your child about surgery.

Encourage your child to ask questions of the neurosurgeon, anesthesiologist, and nurses. Your child’s concerns may be more immediate and very different from yours. You may ask about the length of surgery or technical procedures, but your child may be concerned with how he will feel when he awakes after surgery or how soon afterward she can eat. Children also tend to be much more straightforward than most adults are and may have surprising questions such as “What does a brain feel like?” for the neurosurgeon.

The length of the surgery itself is impossible to predict. Operating-room schedules can change because of emergencies. Because preoperative scans do not always accurately predict what the surgeon will find, the operation often feels additionally stressful for parents. You can inquire if you may bring your child into the operating room and wait until they have been sedated before leaving them. Once your child’s surgery has begun, there is usually a special waiting room where you can stay. Ask if you will be provided with surgical updates. Different hospitals have different ways of updating families. Some have a nurse come out to update the family, and some have devices that allow the surgical team to text the family updates without leaving the operating room. Generally, the surgeon will meet you afterward and explain in detail what was done. Specific medical terms related to your child’s particular operation will be explained by the doctor (and may be defined in the Glossary in this book). Although the type of tumor may be recognized by the doctor
during surgery, the exact pathology cannot be determined until a tumor sample is sent to a lab for identification. It may take up to a week to get the pathology results; however, the surgeon may get a verbal preliminary report sooner.

After surgery, your child will probably be kept in the recovery room until the anesthesia wears off. You might want to inquire prior to surgery if you will be able to go into the recovery room to be with your child. Many institutions prefer that one or both parents be at the child’s bedside when the child awakes after surgery. This can ease a child’s fears and simply make him or her more comfortable. From the recovery room, the child is then usually moved to the pediatric intensive-care unit (PICU) or neurosurgical floor for precise monitoring.

It might be upsetting for you and your family to see IV tubes, drainage tubes, and machines attached to your child, but you can be a reassuring presence simply by talking to and touching your child. If you have questions about procedures or equipment (such as neurological checkups, follow-up scans, a catheter, sutures, hair removal, or bandages), ask! Right after surgery, some of your child’s symptoms may be temporarily worse than before, because of swelling or the trauma of surgery. Nevertheless, remember that children can be amazingly resilient and that the healing process usually begins immediately.

Going Home

Preparation and Transition

Going home can be exciting and joyous for the whole family. It can also be a hectic, fearful, and anxiety-filled period. Both you and your child may feel apprehensive when leaving the security of familiar doctors and nurses, even though they are only a phone call away. All of these emotions are normal responses to being discharged from the hospital.

The social work department of the hospital—or, in some cases, the nursing staff—can help you plan for your child’s discharge home. If home care or other services are needed, advance coordination can
ease the transition from hospital to home. If there is any medical equipment your child will need to have at home, the social worker or nursing staff will make the arrangements. Many times the medical equipment provider will offer training prior to leaving the hospital for your knowledge and comfort.

You want the transition to go as smoothly as possible. The days ahead of you may be filled with stressful moments. Schedules may need rearrangement to accommodate clinic visits. Family members may be separated; siblings may feel neglected. In addition, everyone in the family may well be feeling worried or tense.

My brother and sister were very worried about me when I was going through treatment. My parents helped them feel less stressed by telling them what was happening with me at the hospital. The hospital would not let my brother or sister visit me while I was an inpatient, which was hard for all of us.

It is important to continue life as normally as possible, yet under these circumstances, it is bound to be difficult. Your child needs to get back to some semblance of normal daily life. Whatever changes their condition may have produced in their lives, children with brain tumors still have the same needs they had before their tumor was diagnosed, including maintaining social relationships with friends, attending school as often as possible, and being involved in their favorite activities.

Your encouragement and support in reestablishing such normal daily routines will really help. Overprotecting your child might send your child the message that you think he or she cannot handle a normal routine, whether emotionally or physically. This can create more distress in the long run. Treating your child as if he or she is fragile might keep him or her away from situations that provide opportunities to grow and develop normally. Sometimes when a family is going through such a stressful situation, it can be difficult for parents to determine what information or emotional support the child
needs. Trying to find the right balance between protecting children and sharing information can be particularly tricky.

We used a ‘lights out’ ritual for our family that was a routine time before bedtime that was open for any questions our children had. It helped us understand what was weighing on our children’s minds each day, and we found they appreciated being in control of the conversation. This technique was especially helpful for the siblings who had lots of questions and felt pretty isolated from their brother’s treatment. Sometimes the questions were very difficult for us to answer, but we felt it was okay to say we did not know the answer and we would get the answer from our son’s doctor.

Consider connecting with a group of parents who are going through (or have been through) experiences similar to yours and your child’s. Children’s Brain Tumor Foundation has a Family 2 Family (F2F) Program that connects families across the nation. Resource organizations are also listed within this book to connect you with groups that offer invaluable support, experience, and information.

Preparing to Leave the Hospital

- Discuss ahead of time with your child’s doctors (take notes) what signs and symptoms you might expect to see during your child’s recovery period.
- Collect prescriptions for all medications you might possibly need.
- Ask the doctor what complications may occur.
- Discuss what constitutes an emergency.
- Know how to reach all members of your child’s health care team during and after office hours. Keep these important phone numbers with you at all times, and make sure they
• are accessible to anyone caring for your child in your absence.
• Know where to take your child if an emergency occurs.

When to Call Your Child’s Doctors

A parent’s intuition is wonderfully reliable, so please call the doctor if you sense your child’s condition has changed or worsened; some situations can be life threatening. Report any obvious physical or behavioral changes even if the symptoms do not match any that have previously been highlighted by your child’s medical team. Put aside such considerations as not wanting to bother the doctor, thinking your problem may have no urgency or waiting until morning. You know your child best, so do not hesitate to call medical professionals when you need answers or notice an unexpected symptom. (Sometimes the nurse will be easier to reach than the doctor and have more time to answer your questions.)

You may never again take casually your child’s complaints about a headache or dizziness. Nevertheless, common sense and basic medical knowledge will help you decide what to do. When in doubt, call!

Medical Expenses, Insurance, and Financial Assistance

Bills add up rapidly. Even if you have good insurance coverage, there will be nonmedical expenses such as gas, tolls, meals away from home, childcare, and lost wages. (Keep receipts—some of these expenses may be tax deductible.) It will be important you receive all the financial aid and insurance benefits you are entitled to receive.

Advice for Dealing with Your Insurance Company

• Educate yourself. Know about your child’s illness and why referrals to specialists are needed. You will sound knowledgeable and thus will be more likely to quickly get the assistance you need.
• Get a copy of your policy and review it carefully. See exactly what services are covered and how the payment system works.

• See about purchasing additional coverage now, before it may be needed.

• Ask for a case manager at the insurance company who will always handle your case and answer questions. Ideally, you will find someone who is sympathetic to your case and time constraints. (Do not waste time on someone who is not helpful or is uncooperative. Ask for a supervisor.)

• Document every phone call. Write down the name of the person you speak to, the date and time, and the topic discussed.

• Fill out every form completely. Payment may be delayed or denied if the required information is missing. You may want to send in claims “return receipt requested” to ensure that someone of authority will have to sign for it.

• Many insurance plans and health maintenance organizations (HMOs) require that specialized tests, procedures, and treatments be pre-approved and authorized by a primary care provider (usually the pediatrician or doctor who provides routine medical care.) You may need this authorization when you call to make an appointment with a specialist.

• Develop a good working relationship with the office staff of your child’s primary care physician because authorizations must come from there. Try to personally meet the person who will be handling these and discuss the whole case with him or her.

• Keep a copy of every authorization you ever get! Follow up on authorizations and never assume they are being handled. Consider telling specialists you will get the necessary authorizations yourself. This may save money and problems later, because you are ultimately responsible for the bills.

• Sometimes the referral process to specialists or therapies is slow. You may have to emphasize the serious nature of your child’s illness to get an earlier appointment or referral.

• Do not wait for someone at the doctor’s office or insurance company to call you back. (Staff members can get busy. They may forget. It isn’t their child.) Call back—every day if
• necessary. It is possible to be both persistent and polite (even though you may feel otherwise after spending hours on hold).

• You have a right to ask questions and to demand the best care for your child. Occasionally you may have to file appeals and grievances to obtain this care. Ask your child’s doctor to help explain complicated situations to the insurance company. You may get help from your state legislator to intervene with your insurance company so your child can get the service for which you are paying insurance premiums.

• Be patient yet ever persistent with these companies!

Financial Assistance

The pediatric oncology social worker is a key member of your child’s health care team. One of the things your social worker can do is help you explore sources of financial aid for which your child or family may be eligible. The hospital financial office may also be able to help you make credit arrangements or see if you qualify for public or private sources of financial assistance. It’s best to apply immediately, because processing can take weeks.

The following is a partial list of sources of financial and employment assistance:

Medicaid: Medicaid is a government program that provides insurance for low-income patients. Entitlements vary among states. Contact your local Department of Human Services or Department of Public Assistance to find out whether your family is eligible and how to apply.

Supplemental Security Income: The Supplemental Security Income (SSI) program may provide some income for a child who is ill or has a disabling condition. Qualification is based on the parent’s income. SSI will also entitle your child to Medicaid. Check with your local Social Security Administration office for an application. The federal telephone number is 800-772-1213.
State Catastrophic Illness Coverage: State insurance may be available if your private insurance plan does not include catastrophic coverage. Ask the social worker to help you find out if your state has this program. For additional information about financial assistance, see our chapter on Resources.

Family Medical Leave Act: Enacted in 1993, the Family Medical Leave Act (FMLA) requires employers to continue health insurance coverage to an employee on medical leave for up to 12 weeks. This means that a parent of a child with a brain tumor can take up to 12 weeks of paid or unpaid (at the discretion of your employer) leave within a 12-month period. An employee who uses FMLA is guaranteed his or her job or equivalent job at equal pay and benefits level.

Follow-Up Treatment and Rehabilitation

Your child will probably be making regularly scheduled return visits to the neurosurgeon or other specialists to follow up on his or her progress. Your child may also need to return to the hospital for radiation therapy or chemotherapy as an outpatient. Professionals affiliated with support services may be monitoring you at home to provide help, but there are still other experts who may have to be consulted. As you try to reestablish normal life, be aware that your child’s health may have to be monitored for a very long time, by specialists such as these:

Neuroradiologist: One way that doctors monitor the effectiveness of your child’s treatment is to conduct magnetic resonance imaging (MRI) or computed tomography (CT) scans at scheduled intervals. Everyone wants to make sure that the treatment did what it was supposed to do and that the tumor is not growing back. Always have previous scans available to the neuroradiologist, so that they can be compared with the most recent one.

It is natural for parents and children to be anxious at these times. Watchful waiting can become intense. The results of these tests may even be uncertain. For example, it can be difficult or impossible to distinguish recurrent tumor from scar tissue. When doctors are in doubt, they will wait to do another scan or seek other opinions. Newer, more accurate diagnostic imaging techniques (such as functional MRI [fMRI], single-photon emission tomography [SPECT],
and positron emission tomography [PET] scans) are available. Unclear reports do not necessarily mean disaster!

I had been having several unclear MRI scans that were of definite concern to my doctors as well as my parents. After having my first PET scan, which was fairly new and out of state at the time, it was clear that this was merely scar tissue at the old tumor site and not a reoccurrence. Those unclear scan caused quite an uprising at my house, yet turned out to be nothing of concern.

The question “What if . . .” may always be lurking. Even a child whose medical situation is stable will need to be monitored when treatment stops and permanent remissions become cures.

Rehabilitation Therapist: Either the tumor itself or the effects of surgery or treatments may cause impairments in the use of arms or legs, in coordination, or in swallowing. Communication difficulties (language, speech, or understanding) may also occur. Some of these effects may be temporary, or other areas of the brain may take over that function. However, your child may need professional therapy to become as active and independent as possible. **Physical,** occupational, or speech therapists may help restore lost abilities. Children under the age of 3 years may benefit from an early intervention evaluation.

Physiatrist: (or rehabilitation doctor) A specialist who can evaluate your child and make recommendations for a specific type of rehabilitation therapy. **Physical therapists** use motion and exercise to improve strength and movement. **Occupational therapists** evaluate and treat difficulties related to self-care and daily living. They can help develop new ways of doing things like getting dressed or eating, using special equipment if necessary. Children can have therapy as an outpatient, or occasionally a child will benefit from an inpatient intensive rehabilitation program. Therapy can also be
delivered at home. The family may get involved in helping implement a rehabilitation program.

Neuroendocrinologist: The pituitary, thyroid, and hypothalamus are glands in the brain that secrete hormones that control metabolism, growth, and sexual development. Sometimes treatment for a brain tumor can alter their function and lead to medical problems, such as diabetes insipidus, early or delayed puberty, and growth problems. A doctor who specializes in endocrinology will be able to monitor the possible effects of surgery, radiation therapy, or chemotherapy on these glands with blood tests and growth charts. Your child’s primary care physician typically will observe your child for normal growth and development. If there is a problem, your child can be referred to a specialist.

Pediatric Neurologist: A neurologist is an expert in diagnosing and treating disorders and diseases of the brain and spinal cord. Deficits and changes in your child’s abilities or functioning can be identified, and new problems may be detected early. A pediatric neurologist typically checks reflexes, coordination, and the ability to perform fine motor skills, among other things. The findings of these tests will help assess the need for rehabilitative treatment and enable you to seek out other specialists, if needed.

Pediatric Neuro-oncologist or Oncologist: Pediatric neuro-oncologists and oncologists are pediatricians with specialized training in oncology or neuro-oncology (cancer as it relates to the brain and spine). They are uniquely trained to diagnose, treat, and monitor children with brain and spinal cord tumors. Often such an individual will coordinate your child’s care, discussing treatment options with neurosurgeons and radiation oncologists. They often work with Children’s Oncology Group (COG) institutions and thus have access to state-of-the-art therapies and national trials. (In most instances, a clinical trial will be available for your child’s disease. If not, your child’s oncologist is likely to plan therapy on the basis of findings from earlier clinical trials.)

As pediatricians, these physicians are attuned to normal childhood development and diseases. This background, along with extensive knowledge of cancer therapy, allows them to provide information about likely side effects of treatment (particularly as it relates to your
child's developmental status) and to guide you to other subspecialists as needed. A number of major pediatric institutions have long-term follow-up programs for cancer survivors. The pediatric oncologists who run these long-term follow-up programs usually focus on screening and treating problems that may arise years after treatment has ended.

Pediatric Neuropsychologist: Treatment of a brain tumor in children may produce either short-term or long-term problems with learning and behavior. Because some problems become evident only as the child grows older, repeated neuropsychological testing (every 12 to 18 months) is essential to monitor progress and obtain appropriate assistance. A psychologist who is knowledgeable about pediatric brain tumors should perform testing; a neuropsychologist will have additional training related to how diseases and treatments of the brain and central nervous system (CNS) affect psychological function.

Ideally, you should have your child tested prior to beginning any chemotherapy or radiation therapy, to provide the psychologist with a baseline. Some treatment protocols specify testing be done at certain times. Otherwise, you, as your child's advocate, may have to push for this testing to be done and to be covered by insurance.

Results of these tests will be useful if you need to develop an individualized education plan (IEP) or 504 plan with your child's school. The pediatric neuropsychologist will be able to help with school issues and can also be an advocate for your child. Remember, not all children will require school accommodations.

Pediatric Psychologist: Pediatric psychologists are trained to deal with the emotional and behavioral aspects of physical health. They can help with pain management, eating or sleeping problems, and social adjustment. For example, feelings such as grief and depression can often surface in a child who has a serious illness and is not always a serious emotional problem. Misbehavior and even family difficulties can be normal reactions to the reality of the situation. These problems are common enough (during treatment and in the years that follow) that parents should take steps to lessen or prevent their effects. It is best to seek out a psychologist familiar with these kinds of situations.
Pediatric Oncology Nurse Practitioner/Specialist and Physician’s Assistant: Pediatric oncology nurse practitioners and physician’s assistants are highly trained health care team members who often work directly with your child’s doctor and can be a wonderful resource for you. Both nurse practitioners and physician’s assistants can help with medical procedures, including physical exams, under the supervision of a doctor. They often are the medical professionals who can simplify some of the medical jargon for you and coordinate the many tests and procedures your child will undergo.

Pediatric Oncology Social Worker: Pediatric Oncology Social Work as a specialty discipline is committed to enhancing the emotional and physical well-being of children with cancer and their families. Practice is based upon a unique body of knowledge and expertise in the areas of bio-psychosocial care and the impact of life-threatening illness on normal child development and family life. A pediatric oncology social worker can have many roles: provide support, counseling, education, and referrals to community resources, as well as act as case manager for children with cancer and their families. Pediatric oncology social workers help families manage day-to-day challenges associated with a cancer diagnosis and its treatment.
CHAPTER 5

LOOKING AHEAD

The end of treatment is often accompanied by feelings of excitement as well as worry. It is time to look ahead, but also time to consider how life has changed. In this chapter, we will explain some of the medical terms you may encounter, discuss socialization and having fun, and review aspects of advocacy that may become important after active treatment ends. This chapter addresses a broad range of issues, but it is important to remember that every person is unique, and just because someone is at risk for a problem does not mean they will experience it. Most importantly, effects of therapy can take time to show up. Therefore, ongoing medical follow-up is extremely important.

Medical Follow-Up

During long-term medical follow-up, doctors and other providers will monitor for recurrence as well as changes brought on by treatment. Common issues include fatigue, hormonal ("endocrine") problems, neurocognitive problems such as trouble processing, and other difficulties such as decreased hearing or altered balance. Remember, some of this information may not apply to you or your child.

Glossary

Hormonal or endocrine problems after treatment usually require the care of a pediatric endocrinologist. Importantly, treatment is available for hormone changes, but early detection is often beneficial. The following is a glossary of medical terms that you may hear from your team.

Pituitary gland: A small gland located in the brain, just behind the eyes. The pituitary gland controls many of the other glands in the body.
Growth Hormone: Made by the pituitary gland and important for physical growth, bone strength, cholesterol levels, body fat, and stamina. Growth hormone deficiency is very common after treatment for a brain tumor and there is treatment available. Testing for this problem must be performed by a pediatric endocrinologist.

Early Puberty: Some survivors start their pubertal development at a younger age than the general population. This problem is seen more often in girls than boys. An endocrinologist can give medicine to delay puberty.

Thyroid gland: Situated in the neck just above the collarbone. Thyroid hormone helps with energy, digestion, hair and nail growth, and other bodily functions. Many survivors need annual checks of the thyroid hormones and the thyroid itself.

Testicles: The testicles perform two separate functions: (1) producing testosterone, which is needed for sexual development, and (2) producing sperm. If the level of testosterone is low because of cancer treatment, treatment is available. A semen analysis is required to determine if sperm are present and viable.

Ovaries: The ovaries perform two separate functions: (1) producing estrogen and progesterone and (2) producing eggs. If the levels of these hormones are low, they can be replaced by taking a pill or using a patch. Some women who continue to have regular periods after cancer therapy are at risk of entering menopause at a younger age than the general population; check with your doctor to see if this risk applies.

Neurocognitive Challenges

Problems in the areas of memory, concentration, processing speed and attention can emerge during and after treatment. Learning disabilities are particularly common among brain tumor survivors, but can take time to be recognized or diagnosed. Thus, it is extremely important to reevaluate cognitive functioning from time to time in all survivors who are at risk.

If a learning disability is diagnosed, brain tumor survivors are entitled to the same disability protection, benefits, and services as any other person with a disability. Development of an individualized education
program (IEP), outlining educational goals, is mandated by the federal government. You may need to find out how the process works in your school district and advocate heavily. Don’t be afraid to ask your medical team or social worker for help. Documentation from your medical team and the results of formal neurocognitive testing (performed by a neurologist) can support your application.

In the same way, survivors with physical disabilities are also entitled to accommodations both in school and in the community. If you need assistance with this, your medical team and social worker can assist you.

Neurological and Neurosensory Problems

Fatigue is a frequent complaint after treatment, although not all survivors will encounter this problem. Usually, fatigue is caused by many different factors which can lead to exhaustion. Importantly, fatigue can be a sign of depression, and an appropriate evaluation is important. If fatigue is not due to a medical problem or depression, physical activity such as walking may actually help. Some survivors find it helpful to tell others, “I need to take a break.”

Some survivors experience decreased hearing and or difficulty with balance and coordination. Other neurological problems, including seizures, sometimes may develop. Periodic hearing tests should be performed on all children at risk for hearing problems as well as for any child who is experiencing learning difficulties or struggling in school. Any changes in these areas should be brought to the attention of the medical team. Also, regular visits to an eye specialist (ophthalmologist) are recommended for most survivors.

Other Late Effects

Obesity is a very common problem following treatment. All survivors should do their best to eat a well-balanced diet with plenty of fruits and vegetables and should try to maintain a healthy weight. Additionally, some survivors are at risk for osteoporosis (low levels of minerals in the bones) and will need testing or treatment.
Emotional and Social Impact

Coping with the brain tumor experience and the end of treatment can be extremely difficult. While many feel relieved and happy to have completed treatment, anxiety, especially related to follow-up scans, is both understandable and relatively common. If you recognize symptoms of anxiety or depression, please tell your medical team right away. Treatment is available, and could help you feel better.

Some survivors feel different or isolated from their peers. It is important to remember that you are not alone. Some long-term follow-up programs provide psychologists and social workers, but help can also come from community-based organizations, like CBTF, or the school social worker or the psychologist.

Having fun with peers is an important part of life and should not be overlooked. Friends and family can help brain tumor survivors find opportunities for social interaction. Some patients have enjoyed participating in activities with other brain tumor survivors through organizations like CBTF. You can ask your treatment team how to become involved with this or a related organization.

Preparing

One thing to be aware of is that people may ask you questions about your medical history that you may not want to answer (which is your right). You may want to figure out how you’ll respond. Thinking through your answers in advance could make these questions less bothersome.

You can prepare for the end of treatment by keeping a notebook, diary, or other record of the medical history including the following elements (below). If treatment has already ended, ask the treatment team for this information:

- The exact diagnosis (“pathology”) and location of the tumor
- The date of diagnosis
- Hospital or clinic and doctors’ names
- Names and doses of chemotherapy
- Doses and sites of radiation
- Dates and names of surgeries
We created a medical data sheet to hand over to all new medical professionals we came into contact with. It was helpful that we maintained our journal even after treatment ended, for over the years, it is a quick and easy resource to rely on.
CHAPTER 6

SUPPORTING YOUR FAMILY and YOURSELF

Just like their parents, children often feel emotionally stressed in the face of serious illness. Children's—especially teens'—anxiety levels may already be high from whatever suffering the tumor has caused, from the loss of independence and physical ability and from worrying about the future. Everyone in the family may be feeling their own guilt and anxiety.

It's important to remember that your child has the same emotional needs as other growing children. At any age, your child needs reassurance. The suggestions that follow are appropriate for all children, but some may need to be tailored to fit the needs of the youngest patients:

- Reassure your child that a brain tumor is not caused by anything he or she did wrong and that neither the disease nor the treatments are meant as punishment.

- Be honest with your child from the time of diagnosis; however, be sensitive to what your child can understand at his or her particular age. Be honest and realistic when explaining procedures and treatments. Discuss all changes in treatment with your child. Nobody, not even your child, expects you to know everything. If you don't know the answer to a question, don't hesitate to say, “I don’t know.” Truth supports trust.

- Don’t be afraid to ask your child questions. Asking what he or she is thinking will not produce new fears but will provide an opportunity to express fears and worries that already exist. Discussions with your child about what he or she understands will give you a chance to clarify any unrealistic ideas and qualms your child has. Your child may have questions that catch you completely off guard. These questions may range
• from concerns with returning to school to much more involved issues such as possible long-term effects. It may be helpful to answer these questions as best you can and enlist the aid of a doctor or nurse for those you are unsure of.

• Acknowledge your child's feelings. Listen without judging or rushing to reassure. Let your child know that it's all right to feel sad and cry. Encourage your other children to talk openly about their feelings. Family discussions are a good way to reduce anxiety and make it possible for family members to help each other.

• Elevated depression and anxiety in survivors is real. Sometimes, especially for teens, it is written off as laziness or lack of motivation. If your child is sleeping more, lacks interest in things and continues to say they are depressed, seek professional counseling and/or psychiatric intervention.

• Let your child exert some control so long as it doesn’t jeopardize health or interfere with treatment. Giving a child choices will alleviate some anxiety; it will also allow him or her to grow in spite of obstacles.

• Don’t be surprised if your child’s behavior changes. He or she may be having trouble expressing feelings or may be afraid or unwilling to upset you.

• Set limits! During this period, your child may challenge whatever limits you try to set. Although a tendency to let him bend the rules is natural, leniency may actually make a child more anxious and imagine that things are worse than they actually are.

• Be sensitive to the reality that young patients, just like adult patients, have their good and bad days.

• Young children tend to be primarily concerned about separation from their parents. Reassure them every time you leave that you love them and will be back as soon as you can. If you know what time that will be, say so.

• Encourage your child to keep in touch with friends and classmates while absent from school. It’s also important that
your child go back to school as soon as possible. This delivers an important message: “Despite the illness, I'm still a normal child with outside friends, interests, and responsibilities.”

- Socially adjusting after a brain tumor can be very difficult. Children may recognize what is different and may not want to try new things for fear of failure or being made fun. Look for signs your child is not making or keeping friends. You can work with the school to assist with social interactions. Encourage clubs or areas where your child does have an interest or talent.

- Be willing to talk about the changes and the disappointment your child may feel because they can no longer do things the same way.

- Parents often dismiss their own health needs, both physical and mental. It’s extremely important to take care of yourself if you plan to be able to fully care for your child. The hospital social worker is available to discuss how you are feeling and to provide support as well as community referrals.

The Parent as Advocate

An advocate is a person who speaks in support of, or pleads the cause of, someone else. You are the best advocate for your child. Sometimes your child’s voice will be heard only if you speak up.

It’s important to keep a diary or journal of your child’s health from day to day. (See the back of this book for recordkeeping forms.) Keep a record of any unexplained symptoms, such as fever or changes in behavior, along with any suspected side effects. If there are neurological, emotional, or physical changes in your child, a journal will help you describe these to your specialist. Note the date, time, and duration of these symptoms. These may simply be a mild reaction to a medication. A symptom does not necessarily have to be externally obvious to be serious. Any and everything you feel should be reported. You should never give your child any medication, including Tylenol, vitamins, or holistic herbs, without discussing it with your child’s doctor first.
In addition, parents often think of the questions they want to ask the medical team when the team is not available. Keep a list of your questions for your next meeting and bring it with you. These are some questions you might want to ask:

- What symptoms or side effects need to be reported to the doctor?
- What constitutes an emergency?
- How can I monitor healing or changes?
- Is there anything I can do to minimize side effects?
- Exactly what activities are allowed or restricted?
- What medication side effects are possible? How long will my son/daughter have to be on this medication?

Listen carefully to the answers provided by your child’s doctor and take notes. It’s a good idea to make a habit of always carrying a notepad and pen. And as mentioned earlier in this chapter, you may want to have a family member or friend go with you to discussions or meetings with the doctors—it’s surprising how much information you can miss. Additionally you may want to ask the doctor if you may bring a tape recorder to meetings if no family member or friend can attend.

Keeping records of clinical visits and treatments can be helpful for your own reflection. Note things such as:

- Blood count levels
- Treatments administered at the clinic
- Medications prescribed or given/Possible Side Effects
- The doctor’s recommendations
- Your child’s response to the treatment and medications

Be sure to keep track of authorization numbers, referrals, mileage, and expenses. Also keep a separate list of the professionals involved with your child and how to contact them (by phone, fax, or e-mail).
Chapter 6: Supporting Your Family and Yourself

Siblings

Parents whose child has a tumor are easily overwhelmed by everything that needs to be handled. They may be physically and emotionally drained from extended hospital stays and the intensity of caring for their sick child. Other children in the family may have unavoidably been deprived of emotional support when they, too, desperately need it. They may be carrying a heavy load of fear, grief, and confusion, coupled with anger, jealousy, and guilt. They may not want to upset you further and may keep these painful feelings inside. There may be no one with whom to share these feelings. What’s to be done?

You can begin to help by accepting the feelings of your healthy children as normal, understandable, and even justifiable. After all, you have been much more involved with their sick brother or sister. At home, the sick child continues to need a great deal of attention. Brothers and sisters need special attention and love, too. Below are some ways a stressed-out parent can involve siblings and help the whole family.

- Tell your other children, as soon as possible about the diagnosis. Explain the illness in ways that are age-appropriate, providing as much information as they can understand about their sister’s or brother’s condition.
- Discuss the plans for treatment and possible side effects their sibling might face. Prepare siblings for changes in the patient’s appearance including hair loss and changes in weight. Talking about these changes ahead of time helps to reduce fear for the siblings.
- Using the correct terms—brain tumor or cancer—will be helpful, because avoiding the terms can make the subject taboo. Often children’s fantasies about what might be happening are more frightening to them than basic descriptions of reality.
- Assure siblings that they are in no way responsible for the tumor—and that cancer isn’t contagious.
- Explain that the doctors don’t know all the answers but that everyone is doing whatever he or she can to help their sick brother or sister.
Chapter 6: Supporting Your Family and Yourself

- Take them to the hospital to visit or to the clinic during treatment, if you can.
- Involving siblings in the care of the ill child can help them to feel useful, but keep tasks age appropriate. Younger children may want to bring a favorite toy to a sibling while older children may want to do more for the family.

Dad told us that nothing we did or thought or said made my sister sick. He told us no one knows how or why people get brain tumors. He said a brain tumor is a serious illness, not like a cold, and it would need a lot of treatment to make it go away.

- Try to spend as much time alone with each of them as possible.
- Encourage them to become involved in outside activities, and make a point of recognizing their accomplishments, rewarding them with praise, plenty of extra hugs, and thank-yous.
- Listening to them can ease feelings that their needs are being ignored because they’re not sick.
- Don’t hesitate to enlist the help of friends or relatives to transport them to their usual activities or just get them out of the house for some fun.

Close friends watching my brother offered my parents opportunities to stay with me in the hospital night and day as well as during chemotherapy treatments.

Remember to alert teachers to what’s going on at home—the family health crisis may make it difficult for siblings to keep up in school. It also may make a cooperative child unruly or a talkative one silent in class; behavior changes in the siblings of children with cancer are the rule rather than the exception. Let the teacher know when you see signs that may signal emotional upset. Ask the teacher to let you
know if there are any problems with schoolwork or in the classroom. Be sure to keep the lines of communication open.

Fortunately most school-aged children don’t know many people with brain tumors or cancer. Unfortunately, for this reason they know little about it as well and misconceptions are easily formed by children about a brain tumor and its symptoms.

Most important of all, share your feelings with both your sick and healthy children. Letting them know that you, too, are concerned or sad or discouraged will make it easier for them to express their fears.

Nutrition

Good nutrition is an important part of your child’s treatment. Try to deviate as little as possible from your child’s normal diet. Your child’s body needs to heal and gain strength in order to resume normal activities and undergo any treatments that may be planned.

Changes in or difficulties with nutrition can occur in children with tumors. After surgery, children may experience temporary nausea and vomiting simply from the procedure itself. Taking steroids can cause a dramatic increase in appetite. Children undergoing radiation therapy or chemotherapy often develop irregular eating patterns or nausea or complain that their foods taste metallic, too salty, or too sweet, or even have no taste. They may lose their appetite, have a feeling of fullness, or have diarrhea, cramps, constipation, or dry and/or sore throat or mouth. Cancer can place extra nutritional demands on the body and change how nutrients are used.

If any of these changes cause your child continuous appetite problems, call your child’s doctor or nurse. They may prescribe antinausea medications (Zofran, for example). At this point, the health care professional may arrange an appointment with a dietitian, who will become a member of your child’s health care team. Nutritional supplements are occasionally recommended, but the best approach is usually a well-balanced diet worked out with an experienced dietitian to fit your child’s needs and tastes.
When your child isn’t eating well, you’re less likely to overreact if you understand that there will be “off” eating days. Appetite will probably improve over time, and an “on” day is an opportunity for you to increase the nutritional value of the foods you’re preparing. Food is closely tied to emotions, so try to avoid confrontations over meals.

Some alternative treatments include special strict diets for which healing claims are made. Remember that eating favorite foods may be the only way to provide nutrition and pleasure during this time. Children may especially need the calories and protein that are forbidden by alternative treatments. Be sure to check with your child’s doctor or nurse before giving your child vitamins, herbs, alternative supplements, or starting a new diet regimen. Certain compounds can interfere with cancer treatment and can cause harm.

Changes in Physical Appearance

For children (especially teenagers), self-esteem and self-confidence are often closely related to physical appearance. Changes in appearance may lead to an altered self-image. A common side effect of chemotherapy and radiation therapy is hair loss, which will occur in varying degrees from child to child and treatment to treatment. For the minority of children who receive whole-brain radiation, hair loss can be permanent. Although bald patches around surgical scars may attract unwanted stares or questions, the hair will usually grow back. Scars while more permanent, may in time come to symbolize healing or cure. But to a child, the time it takes for hair to grow is likely to seem 10 times longer than it would to an adult.

Talking with other brain tumor patients gave me a sense of acceptance and wellness as I moved along with my treatment.
Taking steroids can cause children to gain weight and to have a puffy “moon” face and acne. You may want to talk about these changes ahead of time so that your child understands what to expect. These changes in appearance disappear once the steroids are stopped. Reassure your child (and yourself) that this look is temporary.

Consider buying a wig after surgery but before any treatment begins, so that you can match your child’s hair color. Check with your child’s social worker for a list of local wig salons that cater to pediatric cancer patients and some of the national groups that provide free wigs. Insurance plans often reimburse for wigs, if a prescription is submitted. The prescription should read: Cranial prosthesis. Many children prefer instead to wear a baseball hat, bandana, or other colorful headgear.

Again, allow your child to express concerns, anxieties, fears, and frustrations. Show him or her that you accept any physical changes, even if they are more upsetting to you than to your child. Humor can be useful in talking about these changes and in encouraging conversation between your child and his or her peers. Your child’s cohorts need to understand that your child is still the same person inside. It might also help for your child to meet and talk with other children who are experiencing similar problems.

Parents, Marriage, and Family

The tasks, obligations, and emotions related to having a child with a serious illness can strain even a strong marriage and family. If parents are divorced or separated, they will need to try to put their personal differences aside to help their child. Single parents may need even more support from the community and outside sources.

By now, you might have seen a few changes in your family relationships. Anticipate, expect, and accept that role changes will occur. Who does what in the family may change, and these new jobs may have to be negotiated. For example, who is the caregiver and who is the breadwinner may change, especially when health insurance is tied to employment status. No single role is more important than the other. Each job is needed for the family to function as a whole. Respect and accept your partner for what he or she does. And remember, it may
help to include each other and other family members in everyday care of your child.

Everyone copes in a different way. There is no right way of coping with a child’s serious illness. Try to recognize, accept, and honor your partner’s style of coping even if it is different from yours. Some people need to talk. Others prefer introspection and quiet. Make time for yourselves as a couple, even if it’s just 10 minutes a day. You can share feelings and maintain a relationship as partners.

Here are some suggestions to help you adapt and develop your coping skills:

- Gather information. Knowledge is critical to accessing expert care and ensuring quality of life. There will be less mystery, and you may gain a sense of having more control.
- Seek counseling when needed, as having a child with a serious illness can magnify other problems that were occurring prior to the diagnosis.
- Practice relaxation techniques such as deep breathing, meditation, and imagery.
- Work on and use your sense of humor. Studies show that laughter releases stress and improves the immune system.
- Expect that there will be stressful times. Anxiety is normal under the circumstances.
- Prioritize your worries. Although it is natural to focus on smaller, less frightening annoyances, save your energy for the big things.
- Write your feelings in a journal and let your partner read what you are feeling. Emotions can be less overwhelming and more easily understood when written, rather than shared “in the heat of the moment.”
- Find and use a support system. It may not necessarily be your immediate family but instead may be trusted friends, hospital staff, and other community resources.
Having a sibling with a brain tumor results in a multitude of emotions at different times, changes in roles and responsibilities and impacts your daily activities. This section of the book was designed specifically for you, a brother or sister of someone with a brain tumor. Below are some of the response you may have during different times. These feelings may come and go, but you are not alone in your feelings. There are also tips on how to manage these feelings and a checklist to help you organize your thoughts.

Feelings You Might Have

Fear and Anxiety

You may wonder what is going to happen to your brother or sister, will I get a brain tumor too, what caused this, and is my brother going to die. You may be afraid something you did caused this to happen. You may be afraid to express your emotions because your parents are already stressed and upset. You may not know what to say to your sibling.

Anger and Jealousy

Another feeling you may have when your brother or sister has a brain tumor is anger. It is natural to feel angry that your sibling is sick, angry that so much attention is put on them, angry that they don’t have to go to school, and angry that you have to spend time with other relatives and adults instead of with your parents. Even when treatment ends, you may think your sister gets away with not doing chores or is not treated the same as you. If you feel this way, know that it is a typical feeling to have. It is also a feeling that can be difficult to tell others about.
Guilt

Some siblings feel guilt that they didn't get sick, some their guilt comes from their reaction to the illness, and other times, some feel guilt because they are healthy and able to continue their typical activities. You may feel guilty because you picture life without your sibling.

Feeling Neglected or Jealous

After your sibling is diagnosed with a brain tumor, a lot of attention will be focused on your brother or sister. Their health will become the focus of the family and getting them to their doctor’s appointments and treatments may mean you miss out on certain activities. Parents are stretched thin and may forget some other things that are going on. They may try to make sure you are able to maintain your normal activities, however sometimes it just isn’t possible. During these times you may feel neglected and that no one is focusing on you.

Embarrassed

After your sibling has completed treatment, there may be some differences in the way they look, behave, or react to certain situations. Sometimes these changes may cause you to feel embarrassed. Embarrassment can sometimes lead to other negative feelings like guilt, shame, or being annoyed.

Things that May Make You Feel Better

- Ask for information. Oftentimes parents will feel they are protecting you by not telling you what is going on. One thing you can do to gather information you would feel is helpful is to write down what questions you have and take them to your parents. Parents worry that they will scare you with giving you too much information, but more often than not. Ask if you can attend appointments or privately ask the medical team questions, if you are uncomfortable asking your parents.
• Ask if there is anything you can help with. Talk to your parents and sibling to see if there are things you can do to help them during this time. Ask your sibling if they want to do something with you. They may be feeling lonely too.

• Identify someone who you can talk to. Sometimes it is hard to talk with your parents or other adults about what you are going through. Find someone who you feel can talk to about your feelings. Maybe this person is an aunt or uncle, grandparent, coach, teacher, or other important figure in your life. If you are struggling see if they are available to chat. It is also helpful to tell your parents who that person is so they know if you don’t want to talk to them, you can reach out to that person.

• Make sure you are taking care of yourself. Getting a good nights sleep, exercising, and eating well all help us to feel better and can help you cope better with stressful situations.

• Talk with your Parents. Yes, you may feel that your parents are the last people you want to reach out to at this time. First, they are really busy spending time at the hospital, running your brother your sister to appointments, or on the phone with relatives updating them on what is going on. You may feel your worries are not as big as everything else that is happening. Truth is, your parents are just as concerned about you right now and want to help you as well. They are being pulled in many directions but if you ask them for help, it will help them know what you need.

• Continue to participate in activities you enjoy. Often when stressful or scary things happen, people stop doing the things they enjoy. While it may feel awkward to go out and have fun when your brother or sister isn’t feeling well, it is an important part of taking care of yourself and will help you be a better support to your sibling. If something is really important to you, share with your family that you hope you can attend or you
need them there. It may not always be possible, but they will want to know your priorities.

- Write down your thoughts. While talking with someone is helpful, sometimes what you are feeling is hard to share. That is when writing down your thoughts and feelings is a good thing. Giving voice to your thoughts helps to reduce stress and helps us figure out what we are thinking.

Ways of Offering Support to Your Sibling

There are many ways you can be supportive to your brother or sister after they have been diagnosed with a brain or spinal cord tumor. This is just a small list of items you can do, but there are many more things that your sibling may find helpful. More than anything, talk to your brother or sister and see what would be helpful to them.

- Bring their favorite items to the hospital for them.
- Hang out with them (listening to music, watching a movie, etc.)
- Include them when hanging out with your friends
- Offer to drop off their homework if they need to miss school, or to bring their schoolwork home from their teacher(s).
- If your sibling has to stay in the hospital for an extended period, call or text them when you are thinking about them.
- Play a game together.

Important things to remember:

- You did nothing to cause your sibling’s diagnosis.
- Your sibling diagnosis is not contagious.
- You can help care for your brother or sister.
- It is okay to ask for help.
- Don’t feel bad for having fun.
- Enjoy the things in your life that you did before your brother or sister got sick.
- Ask your parents questions.
- Take care of yourself.
• Even if you are feeling neglected, remember, your parents love and care about you.
Checklist for Siblings

Below is a checklist that can help you understand a little more about your siblings’ health situation, as well as some questions to help you and your family communicate more easily about what you are going through.

Your Name: __

Siblings name: __

Siblings diagnosis: _______________________________________

Types of Treatment Receiving/Received:

☐ Chemotherapy ☐ Radiation ☐ Surgery

☐ Other: __

Name of person you feel comfortable talking to:

__

Names of family/friends you would like to stay with should you need to spend the night with someone.

1st choice: __

2nd Choice: __

3rd Choice: __

Activities that help you feel less stressed/worried:

__

__

__
Chapter 7: Just for Siblings

Things you worry about:

__
__
__
__
__

Ways you want to help your sibling

__
__
__
__
The location of a child’s brain tumor and the treatment (surgery, radiation and/or chemotherapy) received can affect cognitive and/or sensory functions. This can result in difficulties with thinking, learning and remembering. These difficulties are often referred to as neurocognitive impairment. Such impairments may be temporary or permanent. For example, neurocognitive impairment may be acute and occur during the time of active treatment with recovery of function after the discontinuation of therapy. In contrast, some neurocognitive impairments may be associated with long-term learning and functional problems that emerge after treatment is completed, such as persistent memory, processing speed, attention, and academic skill deficits. (Palmer et al., 2013, Ellenberg et al., 2009, Conklin et al., 2008, Ris et al., 2008) Neurocognitive difficulties that develop or persist after therapy is completed are referred to as neurocognitive late effects. Changes in the way your child learns may be subtle and may become more noticeable as your child ages and more complex thinking is required. A common example in children is the loss of motor speed and coordination that occurs when receiving vincristine, a problem that usually lessens or resolves after treatment is completed. This chapter addresses the process of returning to school, neurocognitive effects and educational rights. Accommodations and specific testing that can assist brain tumor survivors in reaching their full academic potential are also discussed.

Don't rely on school system testing/evaluations. Get your own by independent evaluators and get them updated regularly.
In addition to education, children and adolescents develop a sense of identity and receive peer support from school. Long absences, changes in appearance, and/or changes in educational abilities can affect self-esteem, and lead to feelings of depression, anxiety, and frustration. The return to school helps to create a sense of “back to normal”. Therefore, despite your concerns including exposure to germs or fear your child will be teased, returning to school as soon as medically possible is very important for your child. To help prevent your child from falling behind academically, your child should keep up with school work while in the hospital for treatment. States differ in their laws related to the provision of homeschooling during hospitalizations, but all states have provisions to assure that education continues. During treatment, ask the healthcare team about an estimated date your child can return to school, even if it is only for partial days. Check with your medical team to see if they have an education coordinator, school liaison or social worker that can help you with the school reentry process.

Many children can continue to attend school while they are undergoing treatment. However, they may be at risk for emotional and other educational problems. Providing open communication with the school and classmates will assist in clearing up common misconceptions about brain tumors and help them gain an understanding of your child. If informed, teachers can deal successfully with problems (e.g., self-image, relationships with peers) as they arise.

Before your child returns to school, you need to begin the communication process. Make sure the principal and other school personnel involved with your child’s education know your child’s diagnosis, treatment and the effects of each. Ask the school who the primary contact person should be. This person can provide medical updates to your child’s teachers and the school nurse. The more knowledgeable and familiar the school is with all aspects of your child’s treatment and its impact, the more the school environment can be adapted to your child’s unique educational needs.

When your child returns to school, you want him or her to be treated as normally as possible. You will need the cooperation of both the school and the health care professionals working with your child. It is also important to remember your child may be afraid to return to school. Changes in appearance, learning and physical abilities can make
your child look and feel “different”. Finding acceptance and understanding from others may be difficult. Therefore, it is important to monitor changes in behavior, school performance and peer relationships.

Ask your child’s medical team for a hospital-school liaison who will provide ongoing information about medical/psychological issues to the school. Many hospitals and schools have a school reentry program. If they do not have a specific person, you may want to talk to your social worker and child life specialist about working with the school and classmates. The liaison can meet with your family and the school, determine what is needed to return to school, help educate the school about your child’s needs, and provide any written materials you may need. Additional support may be found through community based programs such as CBTF who have advocates with expertise in the educational needs of brain tumor patients and survivors.

Before your child returns to school, set up a meeting with your liaison and your child’s educational team. This should include your child’s teacher, school nurse, counselor and principal. This meeting will give you an opportunity to discuss any special requests or concerns you might have. Make sure to include a health care professional familiar with brain tumors. Here is a list of things you will want to make sure the school is aware of:

- Any medications your child needs to take (including time and how to give them)
- Any special devices the child will use and how to use them
- If your child has a port, central line or shunt, the school should be aware of it and know the warning signs of a developing problem
- Potential of seizures (if this is a concern)
- What may be a medical problem and what is not a medical problem
- How to handle any emergency including who to contact first
- Allergies, medicines or treatments your child cannot have
- Medical contact numbers

To make the transition back to school easier, a school representative and/or your hospital liaison should be encouraged to prepare classmates by providing them with information about
brain tumors and treatment, and answering any questions they may have. Pediatric brain tumor diagnoses are rare, so educators may have limited knowledge about brain tumors. They may also have misconceptions. Let the teachers and classmates know what has changed and what hasn’t changed. Explain what to expect, for example if your child now has difficulty with balance or vision inform his classmates. Give them an opportunity to express their concerns and feelings. It is important to communicate to other students that brain tumors are not contagious, they do not make you less intelligent, and that radiation treatments do not make a child glow in the dark. The question of death may arise, and if it doesn’t it will probably come up after you leave. You should think about how you are going to answer this question and can rely on the liaison to assist you. You may want to talk to your child about how involved he or she wants to be in the classroom presentation. It is very difficult for children to feel they are different from their peers. Letting them have some control over what is shared and what is not may help these feelings. The presentation may dispel misconceptions and encourage acceptance. It is important during this transition time to check in regularly with your child not only about academic concerns, but about the relationships they are having with their classmates.

Fatigue and medical needs may warrant a slow, transitional phase. Attending only half-days, only having lunch or going on a field trip with the class prior to a full-time return to school, can be helpful for some children.

Things to Consider

Accommodations may be needed to meet physical changes, changes in the way your child learns, and potential behavioral changes related to a brain tumor and its treatment. Cognitive changes will be discussed in the following section.

Some physical changes may include changes in vision, hearing, balance, and energy. Seating arrangements in the classroom may need to be adapted if your child experiences hearing or visual impairment. Classroom, playground and gym accommodations may need to be made to assure your child’s safety. If your child is experiencing fatigue, he or she may need playground or gym exemptions, a locker closer to the classroom or an extra set of books
at home to eliminate the need to carry them home. You may want to discuss modifying homework assignments with the classroom teacher. Medications, need for extra drinks throughout the day, and additional restroom breaks should all be addressed with the school. The hospital can assist with providing all needed documentation.

While these changes may be necessary, the way in which they are implemented can assist in making your child feel more at ease. No one wants to be singled out as the “brain tumor kid” or the one who receives special treatment.

Remember to keep an open line of communication with your child’s school. While the school will be doing its best to make the necessary changes, they have probably had very limited experience with brain tumor patients. You should determine a regular meeting schedule and ask the school who your primary contact person should be. The role the teacher plays is very significant to your child’s developmental adjustment and recovery.

During treatment or at times when your child’s immune system may be compromised, the teacher and/or school nurse must inform you of any communicable diseases that any class member has contracted, such as chickenpox. If your child is still in treatment and has not had chickenpox, exposure to this virus can be dangerous, and you should contact your physician immediately. (Chickenpox is worrisome primarily after chemotherapy; doctors rarely worry after radiation therapy.)

Cognitive and Emotional Changes and Your Child’s Educational Rights

Recent studies suggest that childhood cancer brain tumor survivors are more likely to need special education services than siblings, but with these services survivors have comparable high school graduation rates as siblings. However, without the appropriate accommodations, the ability to meet academic potential is much lower. Brain tumor patients and survivors may face changes in their cognitive and physical abilities, as well as behavioral and emotional changes. Approximately two thirds of brain tumor survivors will have cognitive changes related to their tumor and its treatment.
Cognitive changes in combination with physical changes, behavioral changes and changes in appearance such as hair loss or weight gain, may lead to teasing, bullying or social isolation. In the context of these changes, your child may need academic accommodations and support. Many of these accommodations require the involvement of the special education department.

The first step is to identify whether there are special educational needs and what those needs are. Cognitive changes may become more apparent as your child requires more advanced thinking. While cranial radiation may have an impact on global IQ, this is not the primary academic challenge your child will face. Some of the common cognitive challenges faced by brain tumor survivors are:

- Difficulty paying attention
- Difficulty understanding and remembering visual information
- Reduction in processing speed
- Problems planning and organizing
- Difficulty understanding what they read
- Difficulty adapting (affect, behavior and cognition) to changing demands of a complex environment
- Reduced ability to remember new or old information

While your child may not be flunking classes, some observable changes may be:

- Increased time needed to complete homework
- Going from an A student to a C student
- Increased frustration with school work and feelings of not understanding

If your child does have a physical, cognitive or emotional change which you believe requires accommodations within the school setting, you should schedule a meeting with the school psychologist or counselor to determine the best approach. Your child is protected by several federal laws which will assure that he or she receives the necessary accommodations in the least restrictive setting. This means your child will remain in a classroom setting with non-impaired children whenever possible.
Certain federal laws require all public schools and some private schools to provide appropriate education and services to children with disabilities and special needs. The three main federal laws that apply to your child’s school are the **Individuals With Disabilities Education Act (IDEA)** (http://idea.ed.gov/), **Section 504 of the Rehabilitation Act of 1973 (Section 504)** (http://www2.ed.gov/about/offices/list/ocr/docs/edlite-FAPE504.html), and the **Americans with Disabilities Act (ADA)**. The **ADA** is the most general of the three federal laws, and guarantees equal opportunity for people with disabilities, which may help in making sure your child gets the support he or she needs.

The **IDEA** applies to all public schools and covers children with one of 13 classifications of specified disabilities or special needs. A child with a brain tumor may be classified as hearing or visually impaired or under the categories of traumatic brain injury, or specific learning disability. Occasionally schools do not view a brain tumor as a traumatic brain injury and may classify a child as other health impaired (OHI).

Under the IDEA, your child is entitled to an evaluation to determine eligibility for an individualized education plan (IEP). The IEP will establish your child’s unique and individual educational needs and will document appropriate accommodations and services. The IEP is written by the educational team along with the parents, the child (if he or she is over 14), and any other advocates involved. Once your child has an IEP, the school *must* provide the accommodations and services that the plan requires. The federal government gives money directly to school districts to cover eligible students.

The IEP will set specific goals for your child’s education. It will include referrals to needed services such as occupational therapy, speech therapy or counseling. Here are some accommodations that may be included on an IEP:

- Use of a computer or audio books
- Provision of written class notes
- Weekly assignments given ahead of time (assist with organization)
- Use of a calculator
- Extended testing time
- Shortened homework assignments
Chapter 8: Education

The IEP can be changed during the school year through a formal meeting process and a yearly meeting will be held with all involved parties to assess progress and needs for the upcoming school year. Issues related to social integration can also be included in the IEP. Parents must be notified in writing of all educational meetings.

Section 504 applies not only to public schools but to any school that receives federal funds. As a result, many private schools are subject to the requirements of Section 504. Section 504 generally prohibits discrimination against a child or individual with disabilities. A child with special needs is entitled to appropriate educational accommodations to ensure that his or her education is comparable to that provided to non-disabled students.

As a general rule, every school is required to have guidelines for accessing special education services. Public schools typically have guidelines that explain how the IDEA works in their particular school district. Private schools receiving federal funding are also required to follow the IDEA guidelines. If your child is enrolled in a private school, you may want to talk to the school about their ability to comply with IDEA or contact your state’s Office of Special Education and Rehabilitative Services for clarification of the rights of private school students.

Both IDEA and Section 504 give schools 30 days to perform the evaluation after receipt of a written request for testing and then another 30 days to put a program in place. If you disagree with the classification, evaluation, or program provided for your child, IDEA and Section 504 entitle you to an impartial hearing.

Infants and toddlers (birth through age 3 years) who experience the trauma of life-threatening illness and treatments such as surgery, radiation therapy, and chemotherapy are entitled by federal law to early-intervention programs that try to head off developmental delays. These services do not depend on a family’s ability to pay. According to a child’s and a family’s needs, the child may receive physical and occupational therapy, speech therapy, and special instruction. The family may be entitled to family services, such as training, counseling, or case management help to coordinate services.

A state’s education department is typically responsible for children between ages 3 and 21 years, and a state health department for
children from birth to age 3 years. They refer parents or health care team members to early intervention services. After an assessment of a child younger than 4 years of age, an individualized family service plan (IFSP) will be developed by the early-intervention team, which must include the parent or guardian.

An alternative to school-based testing is a neuropsychological evaluation. A parent, health care professional, or school personnel may request this type of testing. This testing is typically done in a medical setting and the cost may be covered by health insurance. Importantly, this testing is slightly different from the testing typically provided by the school system. A neuropsychological evaluation will examine cognitive areas normally impacted by a brain tumor as opposed to just evaluating IQ and academic achievement. The testing will help determine your child’s strengths and weaknesses and will likely assess areas such as attention and concentration, processing speed, memory, visual-motor integration, motor speed and dexterity, and executive functioning. It is important provide the school with any neuropsychological testing from the beginning of the special education evaluation process. A recent study found that less than 50% of recommendations from neuropsychological evaluations were implemented. The authors found that families need ongoing support and knowledge to implement the recommendations. Because the recommendations may be difficult to interpret for both you and the school, you may want to work with an advocate who can help you and the school understand the recommendations. You can receive this documentation from the hospital neuropsychologist or by contacting CBTF.

Getting your child the help he or she needs can be a complicated and frustrating experience. Remember that you are not alone and that there other families in your community who have children with special educational needs and have gone through this before you; they can help you. You may want to connect with families through the Children’s Brain Tumor Foundation’s Family 2 Family Network (F2F). The social workers at CBTF also have expertise in this area.
School Communication Form

There can often be a communication gap between families and the many education staff members who work with your child. To ensure that each staff member is alerted to either your child’s special needs or those of his or her siblings, a communication form can be developed between you and school personnel. A sample form is provided below for your convenience. This form can be used for a child with a brain tumor or a sibling.
Parent–School Communication Form

A student in your school has been diagnosed with a brain or spinal cord tumor (or “A student in your school has a sibling who has been diagnosed with a brain or spinal cord tumor”). Because of the child’s (or “child’s sibling’s”) condition, he/she will need special considerations. It is of utmost importance that the following information be copied and distributed to all staff members who interact with this child. It is imperative that all staff (teachers, office workers, coaches, and so on) retain this document as a reminder so that they will be alert to and able to respond to any medical problems, educational changes or emotional concerns this student may encounter.

Student Name: ____________________
Grade: ____________________
Homeroom Teacher: ____________________
Diagnosis: ____________________
Undergoing Treatment? ___ Yes ___ No
Parent Name: ____________________
Phone Number: ____________

Limitations: __
Medical Concerns: ______________________________________
Emotional and Educational Concerns: ________________________

For further information, please contact: ____________________
Some Tips

If your child has to leave school/friends

- Schedule Meeting with School Principal, Teachers, and anyone else who would be involved in your child’s education
 - Discuss all issues relating to child’s health, educational plans moving forward, and how best to inform and educate child’s classmates
 - Have a presentation for child’s classmates, to discuss child’s illness, etc.
 - Ask child how much they wish to be involved in presentation and how much they would like disclosed to their classmates
 - Keep all information clear, simple and age appropriate
 - Key points to focus on
 - Types of Symptoms (if classmates were aware) and what they may or may not mean (such as headaches, muscle pain, etc)
 - What treatment is the child undergoing to treat the brain tumor (simply)
 - HEAVY EMPHASIS—Explain the nature of the child’s disease, that it is not communicable in any way, that the child is still the friend they have always known and will need them more than ever
 - Explain the differences in child’s appearance; hair loss, weight loss, puffiness
 - Explain the differences in child’s abilities: Cognitive abilities, balance, stamina—Explain why they know need help to do different things in a positive way without diminishing the child
• Most Importantly EMPOWER CLASSMATES to continue to be involved in child’s life
 ▪ To visit
 ▪ Call
 ▪ Send E-mail, letters
 ▪ Skype
 ▪ Involve them in their lives (birthday parties, sleepovers, Halloween parties, etc)

• Answer questions, to be sure classmates understand the main points—it’s not communicable, their friend is no different, and that they need them more now than ever to help fight their battle

• Be sure to keep classmates informed of child’s progress, remind to be involved, ask who has visited/called/emailed, what can they involve the child in (that will be safe and fun)

All of this will make the child’s transition back to school much smoother, less isolating and less awkward for all involved. Classmates, parents and the child’s teachers should be viewed as advocates and allies throughout the entire process to help the child re-acclimate and assimilate back into the academic world.

When Returning

Parents

• Be involved in the school environment to help with the child’s re-acclimation to school
• Discuss with older children how comfortable they are with their parents being at the school to help their younger sibling
• Younger children typically find their parents presence at the school very comforting; (eg. parents bring them lunch, stop by during a non-academic courses), just to make the child aware that they are around
• Be sure faculty is aware that child is returning and address any fears the child may be having (about being treated differently, being left out because they can no longer do the things they used to)
• If teachers are informed and involved they can help to make a child feel more included, for example: if a child cannot perform an activity due to cognitive or physical ability, the teacher can send them on an error, or exclude a portion of the class by having them perform a different task.
• Returning to school can be scary for children and teenagers. They may be very self-conscious about their appearance and the way others are treating them.
• Make Classmates AND THEIR PARENTS aware that child is back, make it a positive event

Education Resources

Alliance for Technology Access
www.ataccess.org/
The mission of the ATA is to increase the use of technology by children and adults with disabilities and functional limitations.

American Childhood Cancer Association
www.candlelighters.org
Educating the Child with Cancer: A Guide for Parents and Teachers
A book edited by Nancy Keene. An essential resource for families who have faced the childhood cancer diagnosis

Assistive Technology News Portal
www.axistive.com
The web site provides new information and product reviews on assistive technology for learning disabilities.

Band-Aides and Blackboards
www.lehman.cuny.edu/faculty/jfleitas/bandaides/
This is a web site designed to help kids, teens, and adults understand about illness.
DO-IT Pals
www.washington.edu/doit/Programs/pals.html
Through the University of Washington, this is an online community of teen and young adults with learning disabilities preparing for college and careers. The Web site is monitored.

Family Center on Technology and Disability
http://www.fctd.info/
The Family Center on Technology and Disability provides a wide range of resources on instructional and assistive technologies,

LD Online
www.ldonline.org
LD Online is dedicated to learning disabilities for parents, teachers and other professionals.

Learning Disabilities Association of America
(412) 341-1515
www.ldantl.org
This association of parents of children with learning disorders and interested professionals publishes pamphlets and books and makes referrals to local chapters.

National Center for learning Disabilities
www.ncld.org
NCLD provides essential information to parents, professionals and individuals with learning disabilities, promotes research and programs to foster effective learning, and advocates for policies to protect and strengthen educational rights and opportunities

National Dissemination Center for Children with Disabilities
(202)-884-8441
www.nichcy.org
Central source for information on childhood disabilities including: IDEA, No Child Left Behind and research-based information on effective educational practices.
National Parent Network on Disabilities
(703) 684-6763
www.npnd.org
A coalition of parent organizations and individuals united to serve children with special needs and their families.

Office of Special Education and Rehabilitative Services
www.ed.gov/about/offices/list/osers/index.html
The Office of Special Education and Rehabilitative Services support programs that assist in educating children with special needs and provides for rehabilitation of youth and adults with disabilities. It also supports research to improve the lives of individuals with disabilities.

Outlook-Life Beyond Childhood Cancer
www.outlook-life.org
Outlook offers detailed information on the impact of cancer on school performance and learning.

Pacer Center
www.pacer.org
PACER Center is a parent training and information center for families of children and youth with all disabilities from birth through 21 years old. Located in Minneapolis, it serves families across the nation, as well as those in Minnesota.

Technical Assistance Alliance for Parent Centers (the Alliance)
888-248-0822
www.taalliance.org
Parent Training and Information Centers (PTICs) provide training and materials to help parents understand their child’s special needs, the laws that protect and provide services to meet those needs, and their parental rights. These centers are found in every state. Call to locate the center nearest you.

Wrightslaw
www.wrightslaw.com
Provides updated and accurate information on; special education laws, education laws and advocacy for children with disabilities.
Learning that your child has a life-threatening illness is devastating and plunges you and your family into a crisis that demands your immediate and full attention. You will be confronted with a series of new tasks and challenges. This is all new to you and it is okay to feel scared. Don’t be afraid to ask for help!

Social workers and hospital staff are able to connect you with community resources and support groups that may be associated with different hospitals or private foundations related to brain tumors or children’s cancer. When you contact national organizations, ask for referrals to local groups and have them send you any newsletters they publish.

You can also ask your child’s doctor or treatment center to connect you with parents or children in a similar situation. The Children’s Brain Tumor Foundation offers this service through our national Family 2 Family Program (F2F), which often can relieve the terrible sense of isolation. Remember that although some parents want to reach out to people, others prefer to rely on a few close family members or friends for support. **There is no “right” way to get through this time.** Try to seek the type of help you need in the style that best suits you and your family.

For help in deciphering the medical information you are receiving, ask your doctor to set up a time with you to answer any medically related questions you may have. Group support may help normalize concerns and fears by connecting you with others in a similar situation. Individual or family counseling can address issues you may not feel comfortable discussing with family, friends, or others around you. Different combinations of support, formal and informal, may be needed at different times.
There may come times of added emotional strain in the future. Your child may have a question or develop a new problem. Even coming off treatment and undergoing follow-up magnetic resonance imaging (MRI) scans can be stressful. Prepare yourself by doing research on sources of support ahead of time which will enable you to know where to go when you need support. In this chapter, we list many national organizations that will be able to supply you with information. Your family’s social worker can help you access local support services.

Enlisting Help at Home

Priorities shift quickly and dramatically when there is a major illness in a family. When a child is ill, everyday needs and tasks take second place to the illness of the child. The rhythm of normal life is interrupted. Regular meals, laundry, and even employment take a backseat to doing what is necessary to ensure proper care for your child. Though family life continues (especially if there are siblings to care for), it may feel as if it just stops.

Depending on your circumstances, family members or close friends may offer to help. Accept these offers as gifts. Such assistance can help keep your home running smoothly during this crisis.

Sometimes (especially at first) too many phone calls and offers of help may be pouring in. Everyone will want to know “how is your child doing?” or “Did they get it all?” It helps to appoint one close friend or family member to coordinate all efforts in a particular category of tasks, such as cooking meals, caring for children, arranging for transportat-

\[\text{or taking phone calls. You might practice a (brief) standard response to people, such as “I’m feeling overwhelmed right now. But I appreciate your concern.” Consider utilizing your voicemail, even when you are home.} \]

Many families use the Internet to communicate. Some parents select one person to send out a group e-mail message that updates everyone on a regular basis. Others make use of resources such as *Caring Bridge* (www.caringbridge.com). This is a website for families of children with a chronic or terminal illness. On the site, families create their own page that details their child’s hospitalization, treatment, and/or overall health and wellbeing. You are then able to distribute the address of your page to other family members and
friends. Everyone can read updates by accessing the page without disturbing the family.

This kind of assistance can be very valuable to you and your family because it will allow you to focus your energy on coping with your child’s illness, decision making, and other changes that you will inevitably have to face.

Although some families are not comfortable accepting help, it is important to recognize the recipient is not the only one who benefits from these offers of assistance. The person offering the help can feel supportive of you in a constructive way during this trying time. It may alleviate some of the helplessness felt by those close to you because it gives them a focus and outlet for their feelings, energy, and love. You will not be able to or be expected to repay them in equal measure.

Support Groups

When your child has a brain tumor, it can be very helpful to take advantage of a support group. Support groups provide a safe place to share with others, to be yourself, and to learn the emotional ups and downs you are feeling are normal. Anger, fear, sadness, frustration, and fatigue are not easy to deal with on your own. A support group can be a place to find comfort, identify and release feelings, and connect with others with a shared experience.

Although health care professionals can guide you and provide strategies for coping, only another parent has experienced firsthand the exhaustion, stress, and anxiety related to having an ill child. You can get guidance on how to deal with family issues and learn more about available medical care and new treatments. Each person will have discovered effective and often different and creative solutions for certain problems.

Sharing these experiences with others can aid and strengthen you. It can also lead to a greater understanding and acceptance of the difficult choices you have to make. You can also learn to cope with the differences between you and those who do not have a child with
a life-threatening illness. Your idea of what is “normal” will be different from what it was before. Learning from others will help you make choices that respect other family members and help you let go of demands that place undue stress on the family.

Recognize and respect your own special needs as a parent so your precious energy is not consumed in presenting a façade, reacting to guilt, or compensating for a lack of understanding from people around you. Even if you do not feel comfortable talking in front of the group, you can listen and feel connected with others who face the same problems. Your journey will become more understandable and more acceptable.

Sibling support groups can help your other children in dealing with the difficulties they face. Siblings may resent the loss of attention from their parents or feel guilt or anger related to the special attention given to the ill child. Even children who seem to be handling it well can benefit from a group where they will meet children facing similar problems and find out that their feelings are normal under the circumstances. Kids need to share their feelings. Although the feelings can’t be taken away, it helps to voice them. Sometimes children can speak more openly with strangers because there are no emotional ties.

Local cancer wellness programs for children, their parents, or other family members can be found by calling your local hospital, cancer center, or local chapter of the American Childhood Cancer Organization (www.candlelighters.org). Groups connected to professional organizations will usually have a professional leader or child life specialist to facilitate a children’s group. Sometimes groups for parents and children meet at the same location and time.

Computer Connections

There is a vast amount of medical information available on the Internet. You can use it to find out more about your child’s illness or to help you decide where to seek a second opinion. Because there is so much information, and because some of it can be inaccurate and misleading, you will have to carefully review it and decide what is actually worth pursuing. It is important to be careful when accessing information on the Internet. A medical center or a physician does not always post information. Be sure to check with your child’s doctor if any questions
arise about what you have read. Retrieving it can be overwhelming in terms of time and emotion.

The information you gather (from this guidebook, literature from national organizations, or from the Internet) may be too technical or simply too much for you to handle at this time. You may want to set it aside until a later time. Remember to discuss information with your child’s health care providers if you want to know how it might relate to your child’s case.

Not everyone has a computer or access to one. Your medical center, a local library, or a friend may be able to provide you with Internet access.

Camps

Children with brain tumors are a lot like other children. After their experiences with surgery, radiation therapy, chemotherapy, medications, and endless tests, children’s efforts to live the way they did before may lead to frustration. A camp experience can give the freedom to enjoy the pleasures other children enjoy and to escape from the trauma of living with a brain tumor. At camp, children can breathe the fresh air, engage in recreational activities with new friends, laugh, and simply be children instead of patients. Parents and siblings may welcome a break, too, from the constant medical and emotional demands of a sick child.

Children’s Brain Tumor Foundation sponsors several brain tumor camps to meet the specific needs of brain tumor patients, survivors, and their families. CBTF has retreats for teens and young adult as well as camps for dad’s and their survivor child. These camps offer an opportunity for children and adults to meet others sharing similar experiences.

All oncology camps can meet the specific needs of your child during or after treatment and will require a medical release from your child’s doctor. Generally there is no or minimal cost to attend these camps. These camps are staffed by trained counselors and other medical professionals. A list of camp resources can be found in Chapter 11: Resources, of this book.
Wish-Fulfillment Agencies

Wish-fulfillment agencies help to grant the special wishes of a child with a life-threatening illness. Whether it is owning a television set, taking a trip to Disney World, attending a special event, or personally meeting with an athlete or entertainer, these organizations will help to provide your child with happiness and joy as they make your child’s dream come true. A list of wish fulfillment agencies can be found in Chapter 12: Resources, of this guide.
CHAPTER
10
Complementary Therapies and Healthy Eating

As a parent, there may be times where you want more for your child than what is being offered by your child’s clinical team through standard medical care. When used in addition, or as a complement to, traditional treatment and surgery, complementary therapies and nutrition counseling may improve your child’s ability to cope with and tolerate treatments as well as improve their physical well-being. **It is critical to always discuss with your child’s team any additional therapies you may be considering. Anyone who practices complementary medicine should be licensed and certified.**

Many of these modalities are being offered within hospital settings as part of their treatment plan. Insurance coverage for complementary therapies is not widely offered and they can be a large out-of-pocket expense. Some insurance companies will offer discounts if you use a provider approved by them. We recommend speaking with your team about how to include your child’s individual complementary treatment plan within their protocol in hopes to standardize fees.

Acupuncture

Acupuncture is a common practice in Chinese medicine, dating back more than 2500 years. Specially designed hair-thin needles of different sizes are inserted into acupoints, areas along the body that when manipulated help correct and rebalance the natural flow of energy in the body. Acupuncture is a painless method of reducing the nausea, fatigue, and anxiety that may be involved in the treatment of brain tumors. It may also improve blood-counts. Some children have a fear of needles, but if your child is willing to try this technique, they may find an acupuncture needle does not hurt. You are your child’s best advocate and will be able to determine the
balance between the possible anxiety of starting acupuncture for your child and the therapy’s proven positive effects.

Aromatherapy

Aromatherapy means “treatment using scents.” It is a holistic treatment of caring for the body with pleasant smelling essential oils such as rose, lemon, lavender and peppermint. Essential oils are added into a bath, massaged into the skin, inhaled directly, or diffused to scent an entire room. Essential oils can relieve pain, affect mood, alleviate fatigue, reduce anxiety, and promote relaxation. When inhaled, they work on the brain and nervous system through stimulation of the olfactory nerves. Your child may be sensitive to hospital sounds and smells while receiving radiation and chemotherapy treatment. Some bone marrow transplant units use aromatherapy during bone marrow infusions to alleviate anxiety. This may be an easy and helpful way to help your child at the hospital, but experts suggest your child may not like the smell used while at the hospital in the future, so it is important to keep that in mind when picking an aroma.

Cannabis

The use of cannabis to help alleviate symptoms associated with cancer and tumor treatment is said to aid with side effects of chemotherapies and radiation. Some of these side effects include pain, stress and anxiety, nausea, and can also be used as an appetite stimulant. Cannabis can be used in various forms such as in edible form and as oils. Laws regarding the use of cannabis for medical treatments vary state by state. A list of states which have passed the use of cannabis for medicinal purposes can be found here: http://healthcare.findlaw.com/patient-rights/medical-marijuana-laws-by-state.html. It is very important to discuss potential use of cannabis with your child’s doctor as there may be drug interactions and other effects which should be taken into consideration before use.
Guided-Imagery and Visualization

Guided-imagery uses the power of a soothing voice and your child’s imagination to help your child cope with potentially anxiety producing or painful procedures. Using a peaceful image; such as lying in the warm sun on a beach while listening to lapping water and waves in the background can lead your child into a calm state of mind, drawn completely into the image you have provided for them. Some children report guided-imagery can help them with nausea, anxiety, and lengthy MRI scans.

You can work with your child daily on visualizing their good cells over taking any brain tumor cells or the chemotherapy gobbling up the “bad cells” like in the Pac-Man video game.

There are many free apps available for smartphones which offer a wide range of coping mechanisms for dealing with cancer and it’s treatments – from “cancer fighting” games where the player can use super powers and action techniques to destroy their cancer cells, to meditation apps which can help your child through guided imagery and some of the calming techniques previously discussed.

Healthy Eating

There can be a difficult balance between creating healthy eating habits for your child and your child’s refusal to eat any food choice that is not their own. Dramatically changing a child’s diet or lifestyle after their diagnosis of a brain tumor may result in resistance to eating at all. Lack of food could be counterproductive to your child’s overall health and wellbeing. There may be times where you will need to give your child any food to maintain caloric intake rather than healthier choices. If you are interested in a healthy living approach to nutrition during and after your child’s treatment, you may want to explore some of the colorful and creative cancer cookbooks which contain helpful nutritional information. Engaging your child in choosing and cooking meals may go a long way in establishing compliance with a healthier diet. Good nutrition is important for a healthy immune system. Explaining to your child that chemotherapy and radiation therapy help to treat their brain tumor but may take a toll on their immune system, may engage your child’s interest in their
own health and wellbeing, empowering them to make healthier choices.

If you are interested in adding vitamins and supplements that may help your child’s immune system through treatment, we advise you **always consult with your medical team** and may want to seek the advice of a trained nutritionist or homeopathic practitioner who has experience working with patients diagnosed with cancer.

Massage Therapy

Massage therapy can play an important role in supporting the well-being of your child through illness and recovery. Massage therapy involves touch and different techniques of stroking or kneading the muscles of the body. In can involve only part of the body or a full-body massage. A foot massage by a trained massage therapist while receiving chemotherapy may be extremely relaxing and can immediately reduce feelings of nausea. Research has shown that massage therapy can help decrease anxiety, depression, insomnia, physical discomfort, pain, and help with symptoms of illness or side effects of medications.

Music Therapy

Music has the ability to assist with emotional, physical or spiritual health and to enhance quality of life. Music and sound promote relaxation and may assist in pain management as well as decrease anxiety, depression, and fear. It has also been shown to reduce nausea and vomiting during chemotherapy administration. The empowering experience of music therapy could prove to be the best part of your child’s day at the hospital. Learning a new musical instrument, downloading favorite songs, or playing in a band with other children receiving treatment are all possibilities in the realm of music therapy. Many children and their families like to come up with a “fight song” which can be a favorite song which helps them to keep positive through diagnosis and treatment. Most hospitals can also provide music to be played during MRI’s, which can help distract your child from the sound of the machine.
Play Therapy

Many children’s hospitals have Clinical Child Life Specialists (CCLS) who offer support to families and children diagnosed with a serious illness through therapies such as play therapy.

A CCLS may use things such as toys, games, and art as a way for children to work through emotional difficulties such as fear, anger, and confusion, which may accompany a brain tumor diagnosis. Alternately, play therapy could serve as a distraction from many unsettling parts of treatment.

Reiki

Reiki, or otherwise known as healing touch, is a gentle but powerful source of relaxation. This modality may prove helpful in stimulating your child’s immune function, enhancing post-surgical healing, and relieving physical and emotional symptoms.

Yoga

In the ancient Sanskrit text of India, “Yoga” is defined as the union of the body and the mind. Yoga is a good kind of exercise for children as it is gentle, non-competitive, and works not only on the entire body but also the mind and the spirit. Children of all ages and physical abilities can practice yoga. Children can learn to stretch, breathe deeply, relax and concentrate. Yoga builds stamina, stability and balance. It can help to improve digestion, elimination of toxins, and to keep them healthy and happy.

Each of these techniques are unique and what may work for one child may not work for another. You will quickly learn what the best is for your child.
Palliative Care, End-of-Life and Bereavement

Palliative Care
The goal of palliative care is to minimize suffering by managing symptoms while maximizing quality of life.

Hospitals and medical teams may offer a form of care called “palliative care” to promote comfort and reduce the stress and pain associated with intensive treatment. The goal of palliative care is to minimize suffering by managing symptoms while maximizing quality of life. This involves understanding and acknowledging issues such as pain management and nutritional requirements, as well as addressing psychosocial and/or spiritual needs presented by the patient and family. Palliative care can be offered in addition to curative treatment, or it can be chosen when curative treatment is no longer an option. Palliative care is provided by a team which includes the patient, family, and medical specialists who provide treatment for your child. Specialists include the doctors, nurses, social workers, and other professionals who are involved in the physical and psychosocial care of your child. Your oncologist may work on the palliative care team or in collaboration with the palliative care team, depending on how palliative care is delivered at your hospital. In addition to providing physical and emotional support for you and your family, the palliative care team is there to help you understand treatment options and guide you through making difficult treatment decisions.
End-of-Life Care

When a child is first diagnosed with a brain tumor, death is the furthest thing from a parent’s mind. The immediate concern is for the child’s comfort, well-being, and recovery. No matter how much you may think you can prepare for the loss of a child, when it comes right down to it, you are never ready to say good-bye to your child.

In the previous chapters, we shared information about different types of brain tumors and the treatment options available. Your child may have been on a treatment protocol for cure, which may have included radiation therapy, chemotherapy, and surgery. However, there may come a time when all treatment options have been exhausted and your child’s condition is not improving. At that time, you might want to explore with your child’s medical team what medical options are available. Palliative care can be offered when curative treatment is discontinued to ensure that your child receives comfortable and compassionate care. Your doctor and medical team, along with your palliative care treatment providers, can work with you to discuss developing a plan of care to support your child through the dying process.

Advance directives may be discussed with you to help inform and educate you about options you may have in deciding on end-of-life care for your child. An advance directive pertains to treatment preferences and the appointment of a surrogate decision-maker should someone no longer be able to make a decision independently. Throughout this time it will be important to maintain open, honest dialogue with your child’s medical team about what your wishes are and what options are available. You will want to gain knowledge and understanding, which is critical in helping you to make the decisions that you want for your child. You may not feel ready for these conversations and find yourself reacting to the
medical team. There may also be times when you need to initiate the conversation with your team. Doctors are dedicated to working toward a cure for your child, but they will benefit from knowing how you feel about palliative care and end of life options so they can work with you to determine the appropriate plan for you and your family.

When asked if he wanted to go on any special trip, he said no. He was happy where he was, doing what he was. He and we knew we had done all humanly possible, with a sense of personal dignity.

Together with your family, you can work with the medical staff to formulate a plan that works for you at this most difficult time. The decision to move toward palliative care and discontinue curative treatment is a difficult one, filled with many emotions including fear, grief and anger, and the search for answers. It is a time filled with a lot to do and a lot to think about.

Hospice

At some point, discussion about hospice may be initiated by members of the medical team. Hospice is a philosophy that emphasizes and supports the physical, psychological, social, and spiritual needs of a child with a disease that is not responding to curative treatment. Hospice care is usually provided at home and sometimes may be offered in hospitals. Care is coordinated by a group of doctors, nurses, social workers, clergy, and volunteers who are specially trained to be available to patients and their families. There are many local hospice programs, and your child’s doctor and social worker will help to arrange this referral. Insurance, including Medicaid, and private donations usually cover the expenses. For more information about hospice, you may contact:

Children’s Hospice International
800-2-4-CHILD
www.chionline.org
Bereavement

The loss of a child is a devastatingly unnatural experience. The process of grief can be a long and painful one during which you may feel alone and forgotten by others who go on with their lives. Throughout this process you may find it helpful to seek information and learn more about grief. You will see that your thoughts, feelings and experiences are shared by others. Finding the type of support that meets your own unique needs can also be helpful. In addition, families often find it incredibly helpful to connect with a supportive community of bereaved families.

Grief is a unique and personal experience shaped by many factors. People can have very different coping styles. Some need to talk, express emotion, and share their feelings. Others prefer to think about grief (as opposed to talking about it), and choose different outlets to process their grief. They may find comfort from getting involved in the cancer community to raise awareness and research money. They may choose creative expression outlets such as painting and music, or prefer to keep busy and active. Many people use a combination of styles to grieve. There is no right or wrong way to grieve, although it is helpful to understand your own personal style of grieving and what type of supportive outlets you need. It is very common for family members to have different coping styles. For example, a bereaved mother may grieve very differently from her spouse and have different needs. Having an understanding of such differences helps couples and families to move forward and support each other throughout their grief journeys.

There is no set amount of time it takes for a bereaved parent to feel “better,” or for the intensity of grief symptoms to subside. At some point it may feel as if grief comes in waves. You may have good days followed by very difficult days. Grief does not have an ending point, and bereaved parents often fear they will never experience joy again. However, many report that they do in fact feel joy and happiness again. Parents explain they adjust to living with their grief. They can be happy while also living with the pain of loss.

Although it is common for bereaved parents to feel very intense pain and sorrow, there are certain situations that require professional help
and guidance. For example, when a person feels as if he or she cannot function (attend work, care for children and family, care for self, etc.). Or, if a person feels as if he or she “stuck” in grief for a very long time. And, if other stressors in life are impacting your ability to cope with grief, it can help to talk with a professional. A professional counselor or therapist can help determine what type of additional support might be needed.

It is common for grieving parents to experience certain challenges. They often feel isolated as they watch the world go on around them. Sometimes relationships end or change. Many find it difficult to support their spouses, partners and children while grieving. Coping with milestones and holidays can also be very difficult. A person’s faith and spirituality can be challenged, causing a grieving person to reshape his or her beliefs. Bereaved parents can find support and guidance around all of these challenges from each other, and through professional help offered by counselors and support groups.

Parents often want guidance on how to support grieving children and adolescents. Children and teens do not grieve like adults. Depending on age or developmental stage, children have varying levels of understanding toward death. Many will express grief through play or emotion/behavior. Some may not appear to be grieving because they may not talk about it or acknowledge it in an obvious way. When they do express emotion, they may do so for a short period of time and then return to playing or other activities. It is important to remember that they are always grieving. Parents can help by telling their children that they are there to listen and talk. Children need to know that they can safely ask questions, talk and express emotion. Parents can give age appropriate explanations when questions are asked, and can assess how much information children are able to handle.

Teens are faced with the challenge of coping with loss while also going through many developmental milestones. Developmentally, they may desire independence but may also need support and comfort because of their loss. Again, parents can help by letting teens know they are there to listen and talk. Sometimes they won’t want to talk, but knowing that they have a safe and supportive place
to go to is helpful. With both teens and children, it helps when parents model healthy expression of grief such as talking about their feelings, talking about the deceased child, and showing that it’s OK to express emotion. Many children and teens benefit from attending grief groups and grief camps, when they feel ready to attend. Private counseling can be very helpful too. CBTF can help you locate in-person resources in your area.

Regardless of how one grieves, bereaved parents often share similar thoughts, feelings and experiences. Parents provide each other with support, hope and inspiration. Making connections with bereaved parents enables parents to feel understood, validated, cared for, and connected. There are many ways to get involved in bereavement communities. Information on how to connect with CBTF’s community is provided below. In addition, parents can attend support groups, grief camps and retreats, and connect with others through numerous online communities.

We grieve intensely because of the love we have for the person we lost. Many parents find comfort from realizing that love never dies, and our relationships with the deceased can continue. There are many ways family members stay connected to their loved ones.

CBTF’s website contains additional information on loss, grief and bereavement. The goal of our national program is to connect bereaved families to a supportive community, provide support programs for families, and offer educational information and resources. CBTF offers the following programs for families receiving end of life care and for grieving families:

- Phone support and counseling
- Family-2-Family Mentor Program
- Memorial Quilts sewn by our volunteer quilters
- Live, online support groups through Jenna’s Corner Online Community www.cbtf.org/registration
- *Grieving Parents of Children’s Brain Tumor Foundation* private Facebook community (https://www.facebook.com/groups/269434893099934/)
- Volunteer opportunities for bereaved parents
- Referrals for support services and resources
Hope has been my one and only link through the entire experience, from the time of my son’s diagnosis, through all the treatments, his dying, our emptiness, and where we are presently. Hope was, and still is, always there: hope he would survive, hope that we could pull through, hope that a beautiful new life awaits him, hope that we would be able to experience joy again, hope that my other son would become a productive member of society, and love life; hope that we will continue to live productively, hope that one day we will be together again. Even as we had to let go of that which means most to us, and watch our beloved child slowly be taken from us, we were able to hold on to that strong thread of hope in a future that would somehow be filled with beauty and meaning. And, we have not been disappointed.
The Children’s Brain Tumor Foundation (CBTF), a national organization, was founded in 1988 by a group of dedicated parents, physicians, and friends to improve the treatment, quality of life, and long-term outlook for children with brain and spinal cord tumors through research, support, education, and advocacy on behalf of families and survivors.

Grants

CBTF is committed to finding a cure for pediatric brain tumors. Since it’s founding, CBTF has awarded grants to prestigious doctors and researchers at leading institutions throughout the United States for scientific research into the causes of and effective treatments for pediatric brain and spinal cord tumors.

Since 2011, with the generous support of the Licensing Industry Merchandisers’ Association (LIMA), CBTF has been privileged to be a leading funder for the Children’s Brain Tumor Tissue Consortium (CBTTC) which is a collaborative, multi-institutional research program dedicated to the study and treatment of childhood brain tumors.

Programs

Information and Referral: The provision of information and referrals is the service most often requested by parents, patients, and health care professionals around the United States. Many families use the
Patient Support toll-free phone number: **866-228-4673**. Everything from community referrals for financial support and insurance coverage to information on issues such as diagnosis, treatment, school reentry, education, bereavement, survivorship, social skills, career development for young adult survivors, and coping for the whole family have all been covered.

Face-to-Face Programs and Support: CBTF offers face-to-face support to families, survivors, and bereaved families through informational groups, recreational activities, and support based groups in the Boston, Minneapolis, San Francisco, New York Tri-state, and Washington D.C. areas, with plans to expand further across the nation in coming years.

Family-to-Family Network (F2F): CBTF’s oldest support program connects experienced parents who want to share their knowledge and understanding with parents who have either a child with a newly diagnosed tumor or a child with a recurrent tumor. In addition, many bereaved families receive support from a F2F volunteer who is also a bereaved parent.

Finding Your Way. A Guide for Childhood Brain Tumor Families from Diagnosis and Beyond: CBTF provides this helpful book. If you are interested in receiving additional copies, or have questions about the contents in this book, please contact CBTF at 866-228-4673 or by emailing info@cbtf.org.

Parker’s Brain Storm: A child-friendly book that describes a little bear named Parker who is newly diagnosed with a brain tumor and is going to the hospital for surgery.

E-Newsletters: CBTF publishes monthly newsletters which keep families up to date on current events and activities, highlights survivor achievements, and explores in-depth topics important to the brain tumor community such as school re-entry post-diagnosis, peer relationships among survivors, family dynamics, and more.

National Online Chats and Support: CBTF holds monthly online chats on the national level to connect members of the brain tumor community in a safe and welcoming environment. We hold individual chats for parents of brain tumor patients and survivors, teen and
young adult survivors, bereaved parents, and survivors transitioning into college. We are always looking for new ways to expand our offerings based on feedback we get from families.

Camps: CBTF provides a number of camps for various members of the brain tumor families. The Young Adult Heads Up and Teen Heads Up Conferences are held annually at Camp-Mak-a-Dream in Gold Creek, MT and are specifically geared towards brain tumor survivors. CBTF is the only national organization to offer the Just Us, Dad and Survivor Retreat, which recognizes the need for survivors to bond with their father and for fathers to bond with each other in an environment they might not have had the opportunity to before.

Website: The CBTF website, www.cbtf.org, is a one-stop information source for families and health care professionals around the world.

Advocacy

Alliance for Childhood Cancer: The Alliance for Childhood Cancer, representing more than two dozen national patient advocacy groups and professional medical and scientific organizations, was established to advocate on behalf of the youngest victims of cancer. CBTF is a charter member. Patient advocates, many of whom are either cancer survivors themselves or are parents of children with cancer, are joined by oncology professionals representing the multidisciplinary spectrum of cancer care in a unique alliance that brings concerned parties together to advance the interests of children with cancer.

Camp and Wish Granting Resources

Camp Mak-A-Dream
www.campdream.org

Children’s Oncology Camping Association
http://www.cocai.org

Children’s Oncology Services, INC
www.onestepcamp.org
First Descents
www.firstdescents.org

Happiness is Camping
www.happinessiscamping.org

Hole in the Wall Gang
www.holeinthewallgang.org

Make-A-Wish Foundation
www.wish.org

Marty Lyons Foundation
www.martylyonsfoundation.org

Clinical Trials Resources

CureSearch for Children’s Cancer
www.curesearch.org

National Cancer Institute’s direct search for clinical trials
www.clinicaltrials.gov

Virtual Trials
www.virtualtrials.com

Complementary Therapies

American Cancer Society
www.cancer.org

American Music Therapy Association
www.musictherapy.org

Association for Play Therapy
http://www.a4pt.org/page/ptmakesadifference
CannaKids
www.cannakids.org

Kid’s Health: Nutritional Needs for Kids with Cancer

National Center for Complementary and Alternative Medicine at National Institutes of Health
www.nccam.nih.gov

Education Resources

DO-IT Pals
www.washington.edu/doit/Brochures/Programs/pals.html
Through the University of Washington, this is an online community of teen and young adults with learning disabilities preparing for college and careers.

Learning Disabilities Association of America
www.ldaamerica.org
This association of parents of children with learning disorders and interested professionals publishes pamphlets and books and makes referrals to local chapters.

Office of Special Education and Rehabilitative Services
www.ed.gov/about/offices/list/osers/index.html
The Office of Special Education and Rehabilitative Services supports programs that assist in educating children with special needs and provides for rehabilitation of youth and adults with disabilities.

Wrightslaw
www.wrightslaw.com
Provides updated and accurate information on; special education laws, education laws and advocacy for children with disabilities.
End-of-Life and Grief & Loss Resources

Bereaved Parents of the U.S.A
www.bereavedparentsusa.org

CBTF Loss, Grief, and Bereavement Program
www.cbtf.org/connections/loss-grief-bereavement

Children’s Hospice International
www.chionline.org

Compassionate Friends
www.compassionatefriends.org

The Dougy Center for Grieving Children
www.dougy.org

Good Grief
www.good-grief.org

Information and Financial Aid Resources

American Cancer Society
www.cancer.org

CancerCare, Inc.
www.cancercare.org

Cancer Information Service of the National Cancer Institute
www.cancer.gov

Cancer Legal Resource Center
www.disabilityrightslegalcenter.org

The American Childhood Cancer Organization
www.acco.org

Chai Lifeline
www.chailifeline.org
The Children’s Cause Cancer Advocacy
www.childrenscause.org

Epilepsy Foundation of America
www.epilepsy.org

Hydrocephalus Association
www.hydroassoc.org

National Children’s Cancer Society
www.children-cancer.org

National Hydrocephalus Foundation
www.nhfonline.org

Patient Advocate Foundation
www.patientadvocate.org

The SAMFund
www.thesamfund.org

Social Media, Online Support, and Apps

Ask The Nutritionist: Recipes for Fighting Cancer
Dana-Farber Cancer Institute created this app to help patients and survivors find recipes to help manage side-effects from treatment and to continue on to a healthy lifestyle after treatment is over.

Calm
Calm is a guided mediation app that teaches mindfulness and stress-reduction technique through daily training programs.

Caringbridge
www.caringbridge.org
Caringbridge allows families to create free websites to update their loved ones about their child’s hospital stay and recovery.
Headspace
The Headspace app teaches individuals how to meditate and live mindfully. There are exercises on everything from managing anxiety and stress to breathing, sleep, happiness, calm and focus.

LivingWith
LivingWith is a multipurpose app which allows patients keep track of their health records and medications, keep friends and family up to date on your child’s health status, and send out group requests to friends and family members if you’re looking for help with tasks.

Lumosity
www.lumosity.com
Lumosity is a program consisting of games intending to improve memory, attention, flexibility, speed of processing, and problem solving. It's available as both an app and a computer program.

Mango Health
This app features a schedule for creating medication reminders, drug interaction warnings, refill alerts, and a diary. There’s also a chance to win prizes if you take your medications!

My Seizure Diary
This is a self-management tool for seizures and epilepsy with a focus on self-monitoring and tracking, managing medications, and communicating with care providers.

ZocDoc
ZocDoc allows you to research and book appointments with doctors according to specialty, location, and whether or not they accept your insurance.

Survivorship Resources

Children's Brain Tumor Foundation
www.cbtf.org

Critical Mass
www.criticalmass.org
Group Loop
www.grouploop.org

National Cancer Institute-Office of Cancer Survivorship
www.dccps.nci.nih.gov/ocs

Planet Cancer
www.planetcancer.org

Stupid Cancer
www.stupidcancer.org

Teen Cancer America
www.teencanceramerica.org

Wig Resources

Children With Hair Loss
www.childrenwithhairloss.us

Locks of Love
www.locksoflove.org

Wigs for Kids
www.wigsforkids.org
A GLOSSARY OF TERMS

~ A ~

absolute neutrophil count: Abbreviated as ANC. The percent of neutrophils multiplied by the total number of white blood cells. This number is used to define neutropenia.

amygdala: Thought to play an important role in extreme states of excitement, aggression, fear, and anger.

anaplasia: Cells or group of cells that grow without structure; a term often used to describe cancer cells.

anemia: Low number of red blood cells in the blood, reported as a low hemoglobin or low hematocrit.

anesthesia: Medication—intravenous, gaseous, local, or spinal—administered to provide pain relief and/or unconsciousness during surgery.

anesthesiologist: A physician specializing in the study and administration of anesthetic medications and the care of patients before, during, and after anesthesia.

anesthetist: A person who administers anesthesia—often a nurse with advanced training in this specialty.

angiography: A diagnostic procedure performed in the radiology department to visualize blood vessels after introduction of a contrast material (dye) into an artery.

anticonvulsant: Medication used to treat or prevent seizures.
antiemetic: Medication used to stop nausea and vomiting.

aphasia: Difficulty with understanding or expressing language, often but not exclusively due to damage in the cerebral cortex.

arachnoid: Spongy mid-layer membrane of the brain which contains blood vessels.

astrocytoma: A type of brain tumor that is commonly found on the cerebellum, cerebral hemispheres, thalamus, or hypothalamus.

ataxia: Inability to coordinate movements or balance; clumsiness.

atypical teratoid rhabdoid tumor (ATRT): These tumors are rare, high-grade tumors that occur most commonly in children under the age of 2. They can be found in any part of the brain and tend to be aggressive and spread throughout the central nervous system.

audiologist: A person who tests hearing.

autonomic nervous system: Controls functions of the body that are carried out without our thinking about them. This includes: blood circulation, breathing, digestion, and the work of hormones in our body.

axon: A branch of the nerve body that typically carries signals from the neuron to other neurons or organs such as the heart, muscles, and lungs.
benign tumor: Slow-growing, non-malignant tumor that does not spread to other parts of the body

biopsy: Examination of a small amount of tissue by a pathologist in an attempt to identify the tumor type.

blood–brain barrier: A protective barrier formed by blood vessels and glial cells that prevents some substances in the blood from entering the brain.

bone marrow transplant: A procedure in which healthy cells able to produce the components of blood are given to a patient to begin producing new blood cells for the patient. This is in contrast to a stem cell transplant by virtue of where the donor cells come from. Cells for bone marrow transplants are usually removed (or harvested) from the pelvic bone.

brachytherapy: A system of treatment in which radioactive substances are placed near or in the brain tumor.

brainstem: The bottom part of the brain that controls many of the automatic functions of the body (breathing, heartbeat, and so on).

brainstem glioma: The tumors are found on the midbrain, pons, or medulla brain structures. The may cause sudden dramatic symptoms, such as double vision, clumsiness, difficulty swallowing, and weakness.

broviac: A specific type of tubing that is placed through the chest wall into a large blood vessel.

burr hole: A surgical small round hole made in the skull usually made for shunt placement and some other neurosurgical issues.
cancer: Cells with uncontrolled growth; a neoplasm.

CBC: Abbreviation for *complete blood count*.

central nervous system: Abbreviated as CNS. The CNS is the nervous system consisting of the brain and spine.

cerebellar astrocytoma: A benign glial tumor of the cerebellum.

cerebellar mutism: A problem that most commonly occurs in some cases of surgery within the posterior fossa where the patient has extreme difficulty coordinating movements of the mouth. The patient may lose the ability to speak and eat. Generally, all patients with this problem recover functional speech.

cerebellum: The portion of the brain that coordinates movements and balance.

cerebral fissure: A large groove that separates the two cerebral hemispheres.

cerebrospinal fluid: Abbreviated as CSF. The clear fluid made in the ventricular cavities of the brain that bathes the brain and spinal cord. It circulates through the ventricles and the subarachnoid space.

cerebrum: Made up of the left and right cerebral hemispheres which are the wrinkled halves of the upper brain.

chemotherapy: Medications used to destroy tumor cells; may be given by mouth, intravenously, or intrathecally.

child life specialist: A professional who uses play therapy and develops activities to help children cope with the effects of illness and treatment.
Children’s Oncology Group: Abbreviated as COG. A group of over 240 medical centers in North America with the primary objective of conducting clinical trials and ensuring that children have access to high-quality medical care.

choroid plexus papilloma: A tumor arising in the choroid plexus, the part of the ventricles in the brain that produces cerebrospinal fluid. This type of tumor usually arises in infants.

clinical trial: A research protocol used to try to identify the most effective treatment. Most children with tumors are participating in clinical trials. These are designated as phase 1, phase 2, or phase 3 trials.

cognition: A general term involving perceiving, recognizing, conceiving, judging, sensing, reasoning, remembering, and imaging.

computed tomography scan: Abbreviated as CT scan. An x-ray device linked to a computer that produces cross-sectional images of the body. Contrast dye may injected into a vein to make some abnormal tissue more evident.

conformal radiation: Abbreviated as CRT. A radiation therapy that uses computers to create a three-dimensional picture of the tumor so that multiple radiation beams can be shaped exactly (can conform) to the contour of the treatment area.

corpus callosum: A bundle of nerve fibers connecting the halves of the brain, allowing information to move back and forth between the two hemispheres.

cortex: The outermost tissue of the cerebrum where the deeply folded area made up of billions of cell bodies give it a darkish cast. It is also known as gray matter.

craniotomy: Any surgical opening into the skull (cranium).
cranial nerves: Twelve pairs of important nerves that originate in the brain and control special senses of hearing, taste, sight, and smell as well as facial, tongue, and eye movement and the skin sensation of the face.

craniopharyngioma: Nonglial growth that usually causes growth failure because of its location near the pituitary gland. It often affects vision.

cranium: The top of the skull.

cyst: A cavity, usually filed with a fluid, sometimes associated with tumors.

~ D ~

dendrite: a branch of the nerve body that receives signals from other neurons or sensory organs.

diabetes insipidus: A problem with water balance in the body due to a dysfunction of the pituitary gland that causes excess urine production and great thirst.

diencephalon: A part of the brain located above the midbrain which includes the thalamus and hypothalamus.

diffuse intrinsic pontine gliomas (DIPG): A brainstem glioma found in the pons region of the brain.

diplopa: Double vision.

dura mater: Tough outer membrane covering the brain.

dysarthria: Impairment of the ability to articulate words, a symptom that may occur with tumors located in the medulla of the brain.

dysmetria: A tremor or unsteadiness of the arms often tested by having the patient alternate pointing to his or her nose and then to the physician’s finger.
dysphagia: Difficulty in swallowing. This symptom usually indicates a tumor involving the lower brainstem/cranial nerves.

dysphasia: Impaired speech with difficulty or inability to put words in their proper order, a symptom that may occur with tumors located in the dominant cerebral hemispheres, particularly the temporal and parietal lobes.

\[\sim E \sim \]

edema: An excessive accumulation of fluid in the cells or tissues that results in swelling.

electroencephalogram: Abbreviated as **EEG.** A test that measures the electrical activity in the brain, particularly in evaluating activity in areas that might indicate seizures.

electrolytes: Elements in the blood that affect cells and can be tested for by blood chemistry analysis. These include sodium, potassium, chloride, and bicarbonate.

encapsulated: Refers to a tumor that is localized, or wholly confined to a specific area, surrounded by a capsule.

endocrinologist: A doctor who is trained to diagnose and treat disorders of the endocrine glands. (These glands secrete hormones that effect many body functions).

endotracheal tube: A breathing tube placed in the mouth that goes into the trachea.

ependymoma: Tumor that arises from cells that line the passageways in the brain where cerebrospinal fluid is produced and stored. Ependymomas are either supratentorial (occurring in the top of the head) or infratentorial (occurring in the back of the head). Most ependymomas in children are infratentorial, located in or around the fluid-filled fourth ventricle.
Chapter 13: A Glossary of Terms

~ F ~

frontal lobe: a groove in the brain that has much to do with the intellect and the ability to fit into a social group, helping us plan and prioritize, concentrate and recall, and exert control over our behavior.

functional magnetic resonance imaging: Abbreviated as fMRI. A scanning technique used to show brain function by demonstrating changes in the chemical composition of brain areas or changes in the flow of fluids.

~ G ~

gadolinium: The contrast material used for magnetic resonance imaging.

Gamma Knife: A brand name for a device a surgeon uses to perform stereotactic surgery.

ganglioglioma: A type of brain tumor that most commonly occur in the temporal lobe of the cerebral hemispheres, the third ventricle, and less commonly in the spine.

gastrostomy tube: Abbreviated as G tube. A tube used for feeding that goes through the abdominal wall and into the stomach.

germ cell tumor: Tumor arising in the pineal or suprasellar regions, above the pituitary gland. This type of tumor is most often diagnosed around the time of puberty and is more likely to affect boys than girls.

glial cell: A general name for cells of the central nervous system that nourish and support the nerve cells and the blood vessels that supply the nervous system. There are several specific types of glial cells: astrocytes, ependymal cells, and oligodendrocytes.

glioma: A tumor arising from glial cells or the supporting cells of the nervous system.
grade: When related to a tumor, it reflects the (high or low) potential for growth and degree of anaplasia.

granulocyte colony-stimulating factor: Abbreviated as **G-CSF**. A medication given by injection to stimulate white blood cell production.

gray: Abbreviated as **Gy**. A unit of measurement in radiation; can be used interchangeably with **rad**.

gross total resection: Complete removal of a tumor as measured by the surgeon’s observation (not by a microscope).

~ H ~

hematocrit: A measurement of red blood cells in the blood; often used as the basis for decisions regarding transfusions.

hematoma: A collection of blood most commonly under the skin.

hemiparesis: Muscle weakness of one side of the body.

hemiplegia: Complete paralysis on one side of the body.

hemoglobin: A measurement of red blood cells in the blood; often used as the basis for decisions regarding transfusions. This a number approximately one third of the hematocrit.

Hickman: A specific type of tubing placed through the chest wall and into a large blood vessel.

hippocampus: Part of the brain that assists in the formation of memories from new experiences.
home care: A hospital department or organization designed to provided equipment, support, and nurses so that medical care can be undertaken at home.

hormone: A substance that the body produces that acts as a messenger to affect other organs.

hospice: Organizations that specialize in end-of-life care.

hydrocephalus: “Water on the brain”; a buildup of abnormal amounts of cerebrospinal fluid within the brain’s ventricular system that causes pressure on the brain.

hyper-: A prefix to medical words that means “high” or “elevated.”

hyperfractionated radiation therapy: The administration of radiation therapy in smaller and more frequent doses to equal the total prescribed amount.

hypertension: Elevated (high) blood pressure.

cy-: A prefix to medical words that means “low.”

hypotension: Low blood pressure.

hypothalamus: A regulatory center involved in many functions, such as hormone secretion, the autonomic nervous system, eating, sleeping, temperature, emotion, and sexual behaviors.

hypotonic: Floppy; low muscle tone.

hypoxia: Low level of oxygen in the blood.

~ I ~

immune system: The body’s defense system that protects it from harmful foreign substances such as bacteria and viruses.

immunotherapy: Using the body’s own defense system (antibodies, white blood cells, and so forth) to combat a tumor.
infratentorial: The bottom portion of the brain (located in the posterior fossa under the tentorium) consisting of the cerebellum and brainstem.

intensity-modulated radiation therapy: Abbreviated as IMRT. A three-dimensional computer-aided radiation therapy that targets treatments at the tumor, decreasing damage to normal tissue.

intracranial pressure: Abbreviated as ICP. Pressure within the head; if it increases, it causes pressure on the brain.

intramuscular: Abbreviated as IM. Injection into a muscle.

intrathecal: Injection into the cerebrospinal fluid.

intravenous: Abbreviated as IV, also called contrast. Injection into a vein.

intubation: The placement of a tube in the trachea (windpipe) to assist with breathing.

invasive: Refers to something that invades tissue, including tumors, procedures, and medical specialties (such as invasive radiology, which often places intravenous catheters).

lamina: A thin, flat layer of membrane that is the bony arch of a vertebra.

laser: A technique using focused light to evaporate tumors during surgery.

leptomeningeal: Most commonly used to describe spread of the cancer to the tissue lining around the brain.

leukocyte: A white blood cell.
limbic system: A network of complex interconnections surrounding the top of the brainstem that links our basic functions and emotions to areas of the cerebrum that have to do with those higher levels of thought and understanding that we associate with being human.

long-term follow-up clinic: Abbreviated as LTFC. A specialized clinic that works with survivors and their families to provide comprehensive care, education, and counseling.

lumbar puncture: Abbreviated as LP; also called a spinal tap. A needle penetrates the subarachnoid space of the lumbar spine and a sample of spinal fluid is withdrawn for laboratory examination. This procedure can also be used to inject dye prior to myelography or to administer medication.

magnetic resonance imaging: Abbreviated as MRI. A scanning technique used to diagnose and monitor brain tumors. With this technique, magnetic fields, rather than radiation, are used to make a picture of an area of the body.

malignant: Tending to grow quickly and spread, causing harm to surrounding and/or distant tissue.

medulla: A structure of the brainstem that controls breathing, swallowing, blood pressure, and heart rate

medulloblastoma: The most common malignant brain tumor in children, typically arising in the middle of the cerebellum, interfering with the flow of cerebrospinal fluid and causing hydrocephalus.

meninges: The covering membranes of the brain consisting of the dura mater, the arachnoid, and the pia mater.

meningitis: Infection or inflammation of the membranes (meninges) that cover the brain and spinal cord.

metastasis: The spread of tumor cells of disease from one part of the body to another.
midbrain: A part of the brain between the pons and the cerebral hemispheres in the brainstem that governs basic vision and hearing.

motor area: A strip of brain with distinct sections controlling motor activity such as swallowing, chewing, talking, and movement of the hand, legs, toes, etc…

~ N ~

narcotic: A class of medication used for pain management.

necrosis: Dead cells or tissue.

nasogastric tube: Abbreviated as NG tube. A tube from the nose into the stomach often used for feeding but sometimes used to remove gastric fluids.

nasojejunal tube: Abbreviated as NJ tube. A tube, used for feeding, that goes from the nose to the part of the intestines called the jejunum.

neoplasm: A tumor, either benign or malignant.

nerve body: Makes up each nerve cell with branches called dendrites and axons extending outward.

neuroglia: During fetal and infant development, certain neuroglial cells help guide the neurons to their final destinations in the brain and spinal cord. Others surround and nourish neurons while ingesting debris. There are many more neuroglial cells than neurons in the brain and neuroglia are involved in over half of all brain tumors.

neurologist: A doctor specializing in the diagnosis and treatment of disorders and diseases affecting the brain, spinal cord, and peripheral nerves.
neurons: The workhorses of the nervous system, sending and receiving signals to and from the brain through numerous connections.

neuro-oncologist: A physician who specializes in the treatment of cancer and tumors affecting the brain and spinal cord.

neuro-ophthalmologist: A doctor specializing in the diagnosis and treatment of eye problems that are a result of damage to the brain.

neuropsychologist: A psychologist who specializes in the effects that injury to or diseases of the brain and spinal cord have on emotions, behavior, and learning.

neurosurgeon: A surgeon specialized in the diagnosis, treatment, and surgical management of disorders and disease of the brain, spine, and nervous system.

neutrophil: A type of white blood cell that fights infections. Neutrophils may also be referred to as segs or polys.

neutropenia: A low number of neutrophils in the blood, placing the patient at increased risk for infection.

non-malignant brain tumor: A slow-growing, benign tumor that does not spread to other parts of the body.

nurse practitioner or specialist: A specially educated nurse who provides direct care for your child in collaboration with your child’s physician.

nystagmus: A particular movement of the eye.

occipital lobe: The visual center of the brain, making sense of information coming into the brain from the eyes.
occupational therapist: A specially trained person who deals with certain rehabilitation issues.

Oligodendroglioma: A type of tumor that occurs in oligodendrocytes, a type of supportive brain tissue. They are most commonly found in the cerebral lobes of the brain.

Ommaya reservoir: A medical device implanted under the scalp that delivers medication directly into the ventricles.

oncogenes: Fragments of genetic material (DNA) that carry the potential to cause cancer.

oncologist: A physician who specializes in the treatment of cancer.

ophthalmologist: A doctor who specializes in the diagnosis and treatment of visual disorders and diseases.

optic pathway tumor: Brain tumors that involve the optic nerve. These are usually slow-growing.

osteoporosis: A disorder resulting from too little new bone formation or too much bone loss, causing bones to become weak.

~ P ~

papilledema: Swelling of the optic nerve usually caused by intracranial pressure that can be seen on physical examination by looking at the back of the eye with an ophthalmoscope; not an uncommon finding with brain tumors.

paralysis: Total loss of muscle strength.

paraparesis: Weakness of the legs only.

paresis: Partial loss of muscle strength.

parietal lobe: A fissure (groove) in the brain that is responsible for the functions of logic, math, taste, pain, sensations of pressure, pain, and temperature.
pathologist: A doctor who specializes in the diagnosis of disorders and diseases by studying the tissues and fluids of the body.

peripherally inserted central catheter line: Abbreviated as PICC line. A type of intravenous catheter.

peripheral nervous system: The network of nerves that connects the central nervous system to the arms, legs, eyes, ears, and other organs.

physical therapist: A specially trained person who deals with certain rehabilitation issues.

physiatrist: A doctor who has specialized training in the field of physical medicine and rehabilitation (also called PM and R).

pia mater: The membrane closest to the brain’s surface which contains major blood vessels and covers the brain’s wrinkles and folds.

PICU: Abbreviation for pediatric intensive-care unit.

pineoblastoma: A tumor of the cerebral hemisphere. Their symptoms depend on location and proximity to the CSF spaces.

pituitary gland: An endocrine gland that is situated at the base of the brain and supplies hormones that control many vital processes.

Plasticity: The brain’s ability to adjust to injury or loss of brain cells by making new interconnections, which take over for the loss of others.

platelet: A blood component that functions in blood clotting.

pons: A structure of the brainstem that links the cerebrum to the cerebellum and medulla oblongata.

port: A medical device implanted under the skin, usually in the chest wall, that allows access to the blood vessels to give medication and to draw blood.
positron emission tomography scan: Abbreviated as PET scan. A type of scanning used to measure activity of the brain.

postictal: A period of sleepiness, confusion, or agitation after a seizure.

posterior fossa: The portion or location in the brain that includes the cerebellum, brainstem, and fourth ventricle.

posterior fossa syndrome: A problem that sometimes develops after posterior fossa surgery that causes a patient to be very floppy and irritable. This can be accompanied by hemiparesis, mutism, and cortical blindness.

primary brain tumor: A type of tumor that originates within the brain itself, in contrast to tumors that spread to the brain from another site in the body.

primitive neuroectodermal tumor: Abbreviated as PNET, a tumor arising in the posterior fossa of the brain. (However, tumors with the same characteristics can also occur in other areas of the brain.) This type of tumor tends to spread to other areas of the brain and spinal cord.

protocol: A written plan that specifies exact procedures to follow (related to clinical trials and therapies for brain tumors).

proton-beam radiation: A specific type of radiation therapy using particle beams of protons in a very confined area of the brain.

pulse oximeter: A medical instrument used to measure the oxygen level in the blood by a painless lighted probe.

~ R ~

rad: A unit of measurement used in radiation; can be used interchangeably with a unit called the Gray (Gy).

radiation therapy: Sometimes also called XRT or RT. A technique used to destroy tumor cells by exposing the affected tissue to radiation. This therapy usually consists of daily sessions for several weeks.

radiologist: A doctor who specializes in the interpretation of x-ray films and other imaging techniques.

remission: The decrease or disappearance of clinical symptoms of disease.

resection: Surgical removal of a tumor. See also gross total resection and subtotal resection.

reticular formation: Runs down the length of the brainstem and is the part which is responsible for alertness or arousal.

secondary brain tumor: A tumor that develops away from the original site. See also metastasis.

sedative: Medication used to make a patient sleepy or more relaxed; often used during medical procedures.

seizure: Also called a convulsion; excitation of neurons in the brain leading to involuntary muscle contractions or sensations.

sensory area: A strip of cortex going up one lobe, over the cerebral fissure, and down the other lobe. It is concerned with sensations coming in from the eyes, ears, nose, tongue, and other organs.

sepsis: An infection in the blood stream.

shock: A serious medical condition in which organs are not receiving adequate blood flow. It is usually associated with low blood pressure.

shunt: A plastic catheter with a reservoir and a valve used to relieve the increased intracranial pressure caused by hydrocephalus.
simulation: A confirmation procedure in radiation therapy to ensure that the marked location is accurate.

single-photon emission tomography: Abbreviated as SPECT. A new nuclear imaging technique that involves injection of a radioisotope (radioactive substance) that the blood then carries to the brain's tissues. Areas with more blood flow absorb more radioisotope. These areas are highlighted by colors, showing brain blood flow.

social worker: A health care profession who aids patients and families in multiple aspects of nonmedical care, including supportive counseling, financial aid, communication with physicians, and school issues.

speech and language pathologist: A therapist trained specifically in rehabilitative issues involving communication and eating.

spinal tap: See *lumbar puncture*.

stem cell transplant: A procedure in which healthy cells able to produce the components of blood are given to a patient to begin producing new blood cells for the patient. This is in contrast to bone marrow transplant by virtue of where the donor cells come from. Stem cells are removed (or harvested) usually from the peripheral blood.

steroids: Corticosteroids are medications used for many different complications due to treatments; including controlling the buildup of fluid and swelling of the brain before or after surgery, mimicking the effects of hormones which a patient might have lost the ability to make naturally, and they suppressing inflammation, which can reduce the signs and symptoms of inflammatory conditions. Anabolic steroids are different and are used, on rare occasions, as appetite stimulants.

stereotactic radiosurgery: A single-dose focal radiation treatment in which many relatively weak doses of radiation are directed at a small target simultaneously, but from numerous points of the head.
stereotactic or **stereotaxis**: Computed tomography scanning and magnetic resonance imaging used to permit positioning (for surgery or radiation) in three dimensions so that a tumor can be located very precisely.

subcutaneous: Abbreviated as SQ. Under the skin; often referring to the way shots, such as granulocyte colony-stimulating factor or growth hormone, are given.

subtotal resection: Less than total surgical removal of a tumor.

supratentorial: The large top portion of the brain (above the tentorium) consisting of the cerebral hemispheres.

temporal lobe: a fissure (groove) within the brain that is responsible for memory, auditory processing, and sensory integration processes.

tentorium: A flap separating the cerebral hemispheres from the structures of the posterior fossa.

thalamus: Located as part of the diencephalon, this serves as an information processor for much of what goes to and from the brain.

thrombocytopenia: Low number of platelets.

tinnitus: Buzzing or ringing in the ear, a symptom common with tumors of the acoustic nerve. May also be a side effect of some medications.

tracheostomy: A hole made in the trachea in which a breathing tube is placed.
tumor: Abnormal growth. Tumors may be benign or malignant (by cell type or location).

ultrasound: A technique using sound waves (to give a picture) that is used in the diagnosis of a wide variety of conditions.

ventricles: Small fluid-filled cavities within the brain; these are the location of cerebrospinal fluid production.

ventriculoatrial shunt: Abbreviated VA shunt. Drains cerebrospinal fluid from the ventricles of the brain into the heart. See also shunt.

ventriculoperitoneal shunt: Abbreviated VP shunt. Drains cerebrospinal fluid from the ventricles of the brain into the abdominal cavity. See also shunt.

ventriculostomy: A hole made to allow cerebrospinal fluid to drain from the ventricles. This may be external (so the fluid flows into a drain outside the body) or internal (such as a third ventriculostomy).

vertebrae: Hollow spinal bones of the neck and back.

vertebral column: Also called the spinal column. It is made up of separate vertebrae along your back and neck

vertigo: Dizziness with the sensation of spinning or moving.

vital signs: These are blood pressure, pulse, respiration, and temperature.

white matter: The axons connected to the cell bodies extend below the cortex.
X-Knife: A brand name for a device that a surgeon uses to perform stereotactic surgery.